Моделирование средств и систем автоматизации. Моделирование системы автоматизации проектирования. Пакеты прикладных программ сапр

Лекция 7. Автоматизированные системы моделирования

Сложность современных объектов, содержащих сотни тысяч, а порой и миллионы компонентов, делает их проектирование традиционными (ручными) методами с обязательным изготовлением макета практически невозможным.

Именно по этой причине резко возрос интерес разработчиков электронной аппаратуры к автоматизированным системам проектирования и входящим в их состав подсистемам моделирования.

Об этом можно судить по количеству вложенных средств в их развитие, которое по зарубежным оценкам превышает годовой оборот такого монстра как фирма Intel.

В последние годы даже самые консервативно настроенные разработчики аппаратуры вынуждены пересмотреть своё отношение к САПР как к большим и дорогостоящим «игрушкам», обнаружив в них весьма мощные и эффективные инструментальные средства. Особенно привлекательной выглядит возможность, наконец-то, заменить действующий макет имитационной моделью, а натурные эксперименты – модельными. Раньше их останавливала недостаточная достоверность имитационных экспериментов, но теперь, кажется, с этим всё в порядке.

САПР и её неотъемлемая часть АСМ умеют сейчас очень многое. Они позволяют проверять не только правильность работы проектируемого устройства, но и выяснять его основные характеристики, начиная с самых первых шагов, когда прорабатываются только архитектурные решения будущего проекта.

Современные АСМ электронной аппаратуры позволяют:

§ проверить правильность работы проектируемого устройства;

§ выяснить его временные задержки и проконтролировать выполнение требуемых временных соотношений в схеме;

§ провести моделирование с учётом допустимых нагрузок на выходные контакты;

§ проконтролировать допустимую мощность рассеивания на каждом компоненте;

Другими словами, современные СМ позволяют учесть в проекте такие «мелочи», из-за которых «правильная» схема почему-то отказывается работать в реальных условиях и в реальном окружении.

Современные профессиональные СМ имеют следующие отличительные черты:

§ графический пользовательский интерфейс, позволяющий «рисовать» на экране монитора проектируемую схему и временные диаграммы на её входах;

§ интерактивная рабочая среда проектирования – управляющая оболочка, то есть специальная программа, из которой можно запускать все или большинство других программ пакета, не обращаясь к услугам штатной операционной системы (например, PCADSHL. EXE в пакете PCAD);

§ современные СМ поддерживают иерархическое проектирование как сверху – вниз, так и снизу – вверх;

§ многоуровневое моделирование и метод локальной детализации проекта, неразрывно связанные с иерархическим проектированием;

§ многоразрядные контакты и шины, позволяющие на верхних уровнях иерархии весьма лаконично описывать проект и тут же выяснять его работоспособность;

§ наличие в современных САПР и АСМ постпроцессоров моделирования позволяет не только просматривать в удобной для пользователя форме результаты моделирования, но и обрабатывать эти результаты, отыскивая нужные события или состояния в схеме, измерять временные интервалы, контролировать соблюдение временных соотношений в схеме;

§ современные СМ поддерживают библиотечный метод проектирования, то есть содержат огромное число графических и функциональных описаний компонентов; причём эти библиотеки открыты для добавления в них новых описаний, которые может сделать сам пользователь;

§ в современных СМ реализуется событийный механизм продвижения модельного времени, основанный на принципе dz; это означает, что модельное время продвигается, опираясь на ближайшее событие, а не на очередной такт;

§ моделирование выполняется с учётом реальных временных задержек, связанных с распространением сигналов внутри компонентов; при этом могут учитываться не только средние задержки, но и максимальные их значения, а также наихудший случай при их разбросе;

§ автоматическая генерация модели всей схемы по её структурному описанию;

С этой целью строится структурная модель объекта как комбинация поведенческих моделей структурных примитивов, составляющих объект. Привлекательная сторона библиотечного метода проектирования состоит в том, что структурные примитивы могут принадлежать разным иерархическим уровням. Благодаря этому значительно повышается эффективность моделирования.

Понятно, что поведенческие модели должны весьма точно отображать временные параметры примитива. Современные СМ позволяют строить такие модели. Этим объясняется большое внимание, уделяемое наиболее перспективным САПР и СМ, таким как PCAD, PSPICE (DesignLab), OrCAD, Active HDL и языкам моделирования PML, VERILOG и VHDL.

Типовой состав профессиональной системы моделирования (рис.3) включает графический или текстовый язык описания объекта (ЯОО), с помощью которого пользователь вводит в систему моделируемую схему. Для событийного моделирования описание объекта обычно представляется в табличной форме или автоматически преобразуется в неё из исходного графического представления (в так называемый связный список).

Проектирование схемы выполняется с использованием базовых структурных примитивов, графические и функциональные описания которых содержатся в соответствующих библиотеках.

Транслятор ЯОО (в PCAD’e, например, это программа PC-NODES) преобразует исходное описание проекта в формат, пригодный для моделирования. Моделирование выполняется специальной программой, называемой управляющей программой моделирования или коротко моделятором (в PCAD’e такая программа называется PC-LOGS). На моделятор обычно возлагаются следующие функции:

§ начальная инициализация моделируемой схемы;

§ задание временных диаграмм на входах схемы (заметим, что эту функцию иногда выполняет другая программа, называемая редактором входных сигналов.);

§ продвижение модельного времени по принципу Dt или dz, а при моделировании смешанных (аналого-цифровых) схем используются одновременно оба принципа (лекция 6);

§ автоматическая или пошаговая реализация запланированных пользователем модельных экспериментов;

§ поддержание диалога с пользователем (запросы, диагностические сообщения, ошибки);

§ накопление и фиксация результатов моделирования и представление их в желаемой форме (обычно в виде временных диаграмм или таблиц).

Для задания временных диаграмм входных сигналов в составе СМ обычно имеется специальная программа, которая позволяет рисовать или редактировать входные тестовые наборы в графической или текстовой форме. Она называется редактором входных сигналов, например в пакете DesignLab - это Stimulus Editor – редактор стимулов, позволяющий мышью рисовать эпюры внешних воздействий.

Для вывода, наблюдения и обработки результатов моделирования используется другая программа, называемая постпроцессором моделирования (в PCAD’e она имеет название POSTSIM). Часто дополнительные программы объединяются под общим названием: инструментальные средства моделирования . Сюда могут входить и некоторые другие программы, например менеджер иерархии, менеджер проекта, программа электрического контроля схемы, библиотекарь, отладчики поведенческих моделей, программы автоматической генерации макромоделей, программные логические анализаторы и т. п.

Современные промышленные СМ имеют также средства для проектирования поведенческих моделей, включающие языки логического моделирования (ЯЛМ) и соответствующие компиляторы ЯЛМ .

Информация о проекте хранится в базах данных СМ, которые разделяются на справочные и рабочие. Управляющая оболочка СМ осуществляет вызовы нужных программ и делает работу с системой удобной для пользователя.

Таким образом, можно констатировать, что АСМ объединяют в себе средства для:

§ интерактивного ввода структурной схемы проектируемого или исследуемого объекта;

§ автоматического построения (генерации) его модели;

§ интерактивного ввода временных диаграмм входных сигналов, в том числе и непосредственно в графической форме;

§ автоматического проведения имитационных экспериментов с построенной моделью;

§ автоматизированной или интерактивной обработки результатов моделирования.

Одной из самых слабых сторон моделирования является невозможность имитировать работу объекта в реальном масштабе времени, то есть поддерживать темп, с которым протекают процессы в моделируемом объекте. Сказанное касается, прежде всего, вычислительных систем с их сумасшедшими скоростями работы. Например, чтобы промоделировать функционирование микропроцессора МП8086 на временном интервале 100нс требуется одна секунда процессорного времени ЭВМ с быстродействием 1МИПС.

Отношение названных времён называется эффективностью моделирования и составляет для данного примера величину:

Низкая эффективность моделирования во многом объясняется невозможностью адекватно моделировать параллельно протекающие процессы на однопроцессорных вычислительных системах. Такие процессы приходится моделировать квазипараллельно (лекция 6), обрабатывая одно за другим одновременные события при остановленном (замороженном) модельном времени.

Это время остаётся фиксированным до тех пор, пока не будут обработаны все одновременные (кратные) события, привязанные к текущему моменту времени. После этого модельное время опять оживает и начинает двигаться дальше шагами равной длины (принцип Dt - потактовое моделирование ) или прыгая неравномерными скачками от текущего события до ближайшего будущего (принцип dz - событийное моделирование ).

Для повышения эффективности моделирования используются следующие методы:

n высокоуровневое моделирование;

n многопроцессорные ВС;

n событийный механизм продвижения модельного времени;

n многоуровневое моделирование;

n метод локальной детализации проекта;

n сетевое моделирование;

n компилятивный метод моделирования (вместо интерпретирующего);

n аппаратные акселераторы (ускорители) моделирования.

Перечисленные выше методы повышения эффективности моделирования говорят о том, что АСМ может представлять собой не только программный, но и аппаратно-программный комплекс. В последнем случае он включает кроме пакета программ ещё и специализированную аппаратуру, в частности, многопроцессорные вычислительные установки и/или аппаратные акселераторы (ускорители) моделирования.

Подобные акселераторы находят применение и в других задачах, например, графические ускорители устанавливаются на видео картах или специализированные арифметические сопроцессоры, которые до недавнего времени монтировались на материнских платах РС для ускорения операций с плавающей запятой.

Краткий обзор современных САПР и АСМ

В данном обзоре мы не будем касаться САПР и АСМ, ориентированных на «большие машины». Рассмотрим только системы, устанавливаемые на персональных компьютерах.

Не случайно мы начинаем обзор именно с этого пакета. PCAD одна из первых (если не первая) сквозных систем автоматизированного проектирования, появившаяся на рынке CAD-систем. Слово «сквозная» означает, что такая система позволяет автоматизировать все этапы проектирования аппаратуры, начиная от создания и проверки правильности разработанной схемы и заканчивая разводкой печатной платы и созданием управляющей информации для исполнительного оборудования.

Своё название Personal Computer Aided Design (сокращённо PCAD) пакет унаследовал от имени разработавшей его фирмы – Personal CAD Systems. Долгое время PCAD оставался лидером в классе подобных программных продуктов и если бы не частая смена хозяина, то, возможно, и теперь он не потерял бы своих лидирующих позиций.

Но судьбе было угодно распорядиться иначе. Первые версии этого продукта 1.0, 2.0 и 3.0, созданные названной фирмой в 1985 – 1987 гг., не получили в нашей стране заметного внимания.

В 1988 году права на PCAD получила фирма CADAM Company, которая выпустила версию PCAD 4.5, получившую тогда ещё в Советском Союзе большую популярность. Она была русифицирована, для неё были созданы обширные библиотеки графических описаний отечественных компонентов, а, главное, именно для неё были решены проблемы выхода на отечественное технологическое оборудование – фото плоттеры и сверлильные автоматы.

Благодаря этим достижениям PCAD 4.5 до сих пор находит применение на российских предприятиях электронной промышленности.

В 1992 году PCAD опять сменил своего хозяина, теперь его владельцем стала фирма ALTIUM, которая решилась на серьёзные новшества. Она выпустила версию PCAD 6.0, в которой перешла к арифметике с плавающей запятой. Благодаря этому на два порядка повысилась разрешающая способность графических редакторов, и были устранены многие проблемы, связанные с разводкой печатных плат.

Фирма ALTIUM приняла тяжёлое решение. Она решилась на изменение форматов графических библиотек и перешла от 16- к 32-разрядным форматам описания данных. Чтобы не потерять все библиотеки графических описаний, созданные для более ранних версий, фирма разработала специальную программу, конвертирующую старые библиотеки в новый формат.

Однако ни эта, ни последующие DOS-версии PCAD’а (PCAD 7.0, PCAD 8.0, PCAD 8.5) не завоевали особой любви у отечественного разработчика аппаратуры. Старая любовь к PCAD’у 4.5 оказалась сильнее новых возможностей.

Надо сказать ещё об одной особенности более поздних версий PCAD. Из них была удалена подсистема моделирования, и пакет перестал быть сквозной САПР.

В последние годы (а точнее с1995года) владельцем пакета PCAD является фирма ACCEL Technologies, которая прекратила изрядно надоевшую линию DOS-версий данного продукта и перешла на платформу Windows-приложений.

Последнее её детище ACCEL EDA 14.0 даже в самом названии не отражает связь с бывшим PCAD’ом. Тем не менее, и в новом продукте сохранена идеология более ранних версий PCAD’а, так что разработчикам аппаратуры не придётся заново переучиваться.

Фирма ACCEL Technologies предприняла ещё одну попытку вернуть себе так нелепо утраченные позиции лидера в области CAD-систем для персональных компьютеров. Во всяком случае, создав горячую связь с системой моделирования Dr. Spice 2000 A/D 8.2 фирмы Deutsch Research, она восстановила прежний статус пакета ACCEL EDA 14.0 как сквозной системы проектирования.

Надо сказать, что фирма ACCEL Technologies использование «чужих» программ сделала стратегической линией своего поведения. Аналогичным образом она подключила к своей системе программу авторазмещения и автотрассировки SPECCTRA 7.1 фирмы Cadence. Это одна из самых мощных и эффективных программ, использующая новейшие бессеточные алгоритмы трассировки печатных плат.

PSpice (Design Center, DesignLab)

Аббревиатура PSpice расшифровывается так: Simulation Program with Integrated Circuit Emphasis (моделирующая программа с акцентом на интегральные схемы).

В отличие от PCAD’а эта САПР оставалась верной своему хозяину. Всё началось с разработки в конце 1970-х годов в Калифорнийском университете
(г. Беркли) программы схемотехнического моделирования SPICE 2. Её входной язык описания схемы оказался настолько удачным, что на многие годы вперёд определил неофициальный стандарт описания электронной аппаратуры.

Принятые в ней форматы и модели применяются сейчас во многих программах аналогичного назначения, а списки соединений схемы в формате SPICE используются во многих современных пакетах, например в Micro-Cap, Dr. Spice, OrCAD, ACCEL EDA, ViewLogic и многих других.

Аббревиатура PSpice расшифровывается так: моделирующая программа с акцентом на интегральные схемы (Simulation Program with Integrated Circuit Emphasis).

Первая версия программы PSpice на РС-платформе была создана в 1984 году корпорацией MicroSim. Эта и последующие версии используют те же алгоритмы, что и SPICE, тот же формат представления входных и выходных данных. Заметим, что первая версия программы PSpice моделировала только аналоговые схемы.

В 1989 году появилась версия PSpice 4.0, позволяющая моделировать смешанные аналого-цифровые схемы. Уже в следующем году появилась пятая версия этой программы. Она, в отличие от всех предыдущих версий, позволяла вводить схему не только в текстовом, но и в графическом виде. Кроме того, фирма MicroSim выпустила версию, работающую в среде Windows.

Начиная с 1994 года, на базе разработанных программ моделирования фирма MicroSim стала выпускать САПР Design Center (версии 6.0, 6.1, 6.2, 6.3), в которую были включены дополнительно программы технического проектирования, в частности, уже известный нам автотрассировщик SPECCTRA.

В 1996 году произошла ещё одна смена названия системы. Новая версия 7.1 получила название DesignLab. В 1997 году появилась последняя версия под этим названием DesignLab 8. Мы говорим «последняя», потому что после её выхода корпорация MicroSim объединилась с другим монстром в области разработки CAD-продуктов – фирмой OrCAD. Объединённая фирма получила название OrCAD, но торговая марка MicroSim сохранилась. Созданная фирма уже сообщила о разработке новой САПР - OrCAD 9.0.

Сразу отметим, что VHDL – это не САПР и не АСМ, а язык описания аппаратуры, который поддерживается в настоящее время многими системами моделирования, такими как GMVHDL, Active HDL, Accolade Peak VHDL, OrCAD и др. История появления и развития этого языка во многих отношениях показательна.

Язык VHDL появился не на пустом месте. Можно привести довольно длинный список языков описания и моделирования цифровых устройств, например ФОРОС, ОСС-2, DDL, HSL и т. п., которые вроде бы предназначались для тех же целей. Однако все они страдали одним недостатком – моделируя функцию объекта, они не имели развитых средств для описания и контроля временных соотношений в цифровой аппаратуре (ЦА).

Особенно остро это ощущалось при разработке сверхскоростных интегральных схем (VHSIC – Very High Speed Integrated Circuits). Схема правильно работает на умеренных частотах. Но на высоких частотах синхронизации появляются сбои, и работоспособность ЦУ нарушается. Моделированием на существующих до сих пор языках обнаружить эти предельные для аппаратуры частоты не удавалось.

Военное ведомство США, которое финансировало программу VHSIC по разработке сверхскоростных ИМС, решилось выступить в 1983 году в роли спонсора при разработке такого языка. Он получил название VHDL (Vhsic Hardware Description Language) – язык описания аппаратуры на базе сверхскоростных интегральных схем.

Разработку языка VHDL поддержал институт инженеров по электротехнике и радиоэлектронике (IEEE), и в конце 1987 года этот язык был принят в качестве стандарта (стандарт IEEE 1076).

В окончательную редакцию языка VHDL (1993 год) вошли предложения и рекомендации многих известных специалистов в области вычислительной техники и ведущих фирм, занятых разработкой САПР электронной аппаратуры. Поэтому можно говорить, что язык VHDL отражает общее мнение о том, какими характеристиками должен обладать эффективный стандартный язык описания аппаратуры.

Язык VHDL имеет развитую обще алгоритмическую базу, заимствованную от языка программирования PASCAL. Он содержит тщательно проработанные конструкции для поведенческого (функционального) и структурного представления, а также средства для документирования проектов.

Высокоуровневые описания могут комбинироваться с низкоуровневыми принципиальными схемами. Другими словами, это многоуровневый язык, поддерживающий иерархическое проектирование.

Язык имеет средства для описания протекающих во времени процессов, для задания временных задержек на элементах. С его помощью можно описать временные диаграммы на входах моделируемой схемы и взаимодействия между отдельными устройствами через системную шину.

Министерство обороны США обязало своих поставщиков ИМС представлять в составе документации на новые изделия VHDL-модели и тестирующие их VHDL-векторы.

Интерес к языку VHDL огромен. В США создана VHDL Users Group, в Европе – VHDL FORUM группы, которые занимаются внедрением этого языка. В бывшем СССР также существовала подобная ассоциация.

С внедрением языка VHDL разработчики аппаратуры могут «экспериментально» прорабатывать на своих компьютерах идеи по проектированию цифровой аппаратуры на архитектурном уровне и немедленно видеть результаты своих экспериментов.

Им больше не придётся ждать детализации своих проектов вплоть до уровня логических вентилей, чтобы получить возможность практической оценки своих идей. Им больше не придётся ждать момента, когда будет уже слишком поздно возвращаться назад, чтобы внести фундаментальные изменения в общую архитектуру проекта без громадных потерь времени и средств. Теперь внесение даже серьёзных изменений в проект в малой степени повлияют на его стоимость и сроки подготовки производства.

В отличие от других языков описания и моделирования аппаратуры, язык VHDL не навязывает разработчику конкретный метод проектирования. Он волен выбрать любой способ проектирования с использованием как поведенческих, так и структурных представлений компонентов, можно применить как восходящее так и нисходящее проектирование или комбинировать их.

Язык VHDL позволяет сначала создать абстрактное описание функций, а затем (по мере проработки проекта) осуществлять их детализацию, вплоть до того момента, когда для них станут ясными структурные решения. Другие языки не могут похвастаться столь широкими возможностями.

Системы моделирования, поддерживающие язык VHDL, обычно включают в себя компилятор языка VHDL, отладчик исходного кода и интерактивную подсистему цифрового моделирования. Некоторые АСМ дополнительно включают схемный редактор или интегрируются с другими САПР, имеющими такой редактор. Например, можно создать принципиальную схему в пакете OrCAD и специальная программа конвертирует графическое описание в VHDL-код.

Одна из самых современных систем моделирования на языке VHDL, разработанная корпорацией ALDEC, носит название Active HDL 3.6. Для первоначального знакомства с языком VHDL можно рекомендовать «игрушечную» АСМ, созданную фирмой Green Mountain Computing Systems. Она называется GMVHDL, работает под DOS и занимает всего около 1Mb дисковой памяти.

Вставка 1

Система моделирования – это совокупность языковых и программных средств, которая включает … (см. Технология системного моделирования, стр. 332).

Occurred случаться, происходить

Для подключения а схемному редактору новой графической библиотеки (библиотеки символов) активизируем команду Options -> Editor Configuration

Для подключения к управляющей оболочке (схемному редактору) библиотек с математическими (функциональными) моделями активизируем команду Analysis -> Library and Include Files

Системы автоматизации и управления достаточно часто являются сложными и имеют высокую стоимость. Поэтому проведение физических экспериментов над ними невозможно или нецелесообразно. При исследованиях существующих систем приходится опираться на результаты наблюдений за их поведением, а при создании новой системы - пользоваться аналогиями или предполагаемыми данными о ее функционировании.

Выходом, который позволяет получить количественные оценки, является проведение моделирования, то есть разработка, и исследование таких моделей, которые по основным параметрам отражают поведение реальных систем.

Для разработки алгоритма управления вместо реального объекта управления используется его модель. Модель - это объект любой физической природы, который способен замещать любой исследуемый объект-оригинал так, что изучение модели (более доступного объекта) дает новые знания об оригинале. Смысл модели в том, что она всегда в том или ином отношении проще, доступнее оригинала. Модель должна отражать лишь некоторые черты и свойства оригинала, существенные для получения ответа на интересующий исследователей вопрос.

Изучение каких-либо свойств оригинала путем построения модели и изучения ее свойств называется моделированием. Моделирование - один из наиболее распространенных способов изучения различных процессов и явлений. От того насколько удачно выбрана модель, зависит успех исследования, достоверность полученного с ее помощью результата.

Моделирование бывает физическим и математическим. При физическом моделировании модель воспроизводит изучаемый процесс (оригинал) с сохранением его физической природы (например, военные учения, макет гидроэлектростанции, деловая игра, лабораторная установка). Между оригиналом и моделью сохраняются некоторые соотношения подобия, которые изучает теория подобия.

Под математическим моделированием понимают разработку математических моделей и изучение с их помощью некоторых свойств оригинала. Математической моделью называют систему математических соотношений, описывающих изучаемый объект.

В теории управления широкое применение нашло математическое моделирование.

Созданная математическая модель может стать предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реальной системы.

С помощью модели последовательно рассматриваются и решаются задачи, связанные с поведением реальной изучаемой системы:

  • - описание поведения системы,
  • - объяснение поведения системы,
  • - предсказание (прогноз) поведения системы.

Не основании решения этих задач вырабатываются рекомендации по управлению системой или по созданию систем с определенным поведением.

В теории управления широко применяются методы статистического моделирования систем, особенно в тех случаях, когда система подвержена влиянию очень большого числа случайных факторов.

Получение решений с помощью моделей связано, как правило, со значительным объемом вычислений. Эти трудности разрешаются при широком применении средств вычислительной техники, программных средств и специальных методов.

Методы теории управления синтезируют достижения математики (особенно тех ее разделов, как теория дифференциальных уравнений, операционное исчисление, теория устойчивости, математическое программирование, теория игр, теория вероятностей и математическая статистика и т.д.) и неформальных методов в практике проектирования и создания систем автоматического управления.

Практика автоматизации и управления стимулирует развитие и совершенствование различных разделов математики. Одновременно с этим совершенствование математических методов оказывает большое влияние на практику автоматизации и управления. В то же время, известная ограниченность формальных методов стимулирует развитие различных неформальных методов и процедур (например, метода экспертных оценок, имитационного моделирования, операционных игр и т.д.).

При формулировании цели (стратегии) управления предварительно должны быть изучены и учтены характеристики технологического процесса или объекта. Часто сама автоматизированная система управления используется как инструмент для изучения хода процесса и его реакций на управляющие воздействия. На основании теоретических и эксперимент- альных данных, полученных в результате такого изучения, может быть разработана модель технологического процесса. Она описывает процесс математически, позволяя с помощью вычислительных средств получить достаточно полную картину процесса в целом. На основе новой модели процесса можно определить требующиеся оптимальные управляющие воздействия.

Из модели процесса или системы управления можно определить параметры в алгоритмах управления.

Математическое обеспечение автоматизации проектирования

Математическое обеспечение САПР

Математическое обеспечение САПР состоит из математических моделей объектов проектирования, методов и алгоритмов выполнения проектных операций и процедур .

В математическом обеспечении САПР можно выделить специальную часть , в значительной мере отражающую специфику объекта проектирования, физические и информационные особенности его функционирования и тесно привязанную к конкретным иерархическим уровням (эта часть охватывает математические модели, методы и алгоритмы их получения, методы и алгоритмы одновариантного анализа, а также большую часть используемых алгоритмов синтеза), и инвариантную часть , включающую в себя методы и алгоритмы, слабо связанные с особенностями математических моделей и используемые на многих иерархических уровнях (это методы и алгоритмы многовариантного анализа и параметрической оптимизации) .

Требования к математическому обеспечению

Свойства математического обеспечения (МО) оказывают существенное, а иногда и определяющее влияние на возможности и показатели САПР.

При выборке и разработке моделей, методов и алгоритмов необходимо учитывать требования, предъявляемые к МО в САПР. Рассмотрим основные из них .

Универсальность

Под универсальностью МО понимается его применимость к широкому классу проектируемых объектов. Одно из отличий расчетных методов в САПР от ручных расчетных методов - высокая степень универсальности. Например, в подсистеме схемотехнического проектирования САПР ИЭТ используются математические модели транзистора, справедливые для любой области работы (активной, насыщения, отсечки, инверсной активной), а методы получения и анализа моделей применимы к любой аналоговой или переключательной схеме на элементах из разрешенного списка; в подсистеме структурного проектирования САПР ЭВМ используются модели и алгоритмы, позволяющие исследовать стационарные и нестационарные процессы переработки информации при произвольных законах обслуживания в устройствах ВС и при произвольных входных потоках.

Высокая степень универсальности МО нужна для того, чтобы САПР была применима к любым или большинству объектов, проектируемых на предприятии.

Алгоритмическая надежность

Методы и алгоритмы, не имеющие строгого обоснования, называют эвристическими . Отсутствие четко сформулированных условий применимости приводит к тому, что эвристические методы могут использоваться некорректно. В результате либо вообще не будет получено решение (например, из-за отсутствия сходимости), либо оно будет далеким от истинного. Главная неприятность заключается в том, что в распоряжении инженера может не оказаться данных, позволяющих определить, корректны или нет полученные результаты. Следовательно, возможна ситуация, когда неверное решение будет использоваться в дальнейшем как правильное .

Свойство компонента МО давать при его применении в этих условиях правильные результаты называется алгоритмической надежностью . Степень универсальности характеризуется заранее оговоренными ограничениями, а алгоритмическая надежность - ограничениями, заранее не выявленными и, следовательно, не оговоренными.

Количественной оценкой алгоритмической надежности служит вероятность получения правильных результатов при соблюдении оговоренных ограничений на применение метода. Если эта вероятность равна единице или близка к ней , то говорят, что метод алгоритмически надежен .

Применение алгоритмичности ненадежных методов в САПР нежелательно, хотя и допустимо в случаях, когда неправильные результаты легко распознаются.

С проблемой алгоритмической надежности тесно связана проблема обусловленности математических моделей и задач . О плохой обусловленности говорят в тех случаях, когда малые погрешности исходных данных приводят к большим погрешностям результатов. На каждом этапе вычислений имеются свои промежуточные исходные данные и результаты, свои источники погрешностей. При плохой обусловленности погрешности могут резко возрасти, что может привести как к снижению точности, так и к росту затрат машинного времени .

Точность

Для большинства компонентов МО важным свойством является точность, определяемая по степени совпадения расчетных и истинных результатов. Алгоритмически надежные методы могут давать различную точность. И лишь в тех случаях, когда точность оказывается хуже предельно допустимых значений или решение вообще невозможно получить, говорят не о точности, а об алгоритмической надежности.

В большинстве случаев решение проектных задач характеризуется:

    совместным использованием многих компонентов МО, что затрудняет определение вклада в общую погрешность каждого из компонентов;

    векторным характером результатов (например, при анализе находят вектор выходных параметров, при оптимизации - координаты экстремальной точки), т.е. результатом решения является значение не отдельного параметра, а многих параметров.

В связи с этим оценка точности производится с помощью специальных вычислительных экспериментов. В этих экспериментах используются специальные задачи, называемые тестовыми . Количественная оценка погрешности результата решения тестовой задачи есть одна из норм вектора относительных погрешностей: m-норма или l-норма, где l - относительная погрешность определения j-го элемента вектора результатов; m - размерность этого вектора.

Затраты машинного времени

Универсальные модели и методы характеризуются сравнительно большим объемом вычислений, растущим с увеличением размерности задач. Поэтому при решении большинства задач в САПР затраты машинного времени T м значительны. Обычно именно T м являются главным ограничивающим фактором при попытках повысить сложность проектируемых на ЭВМ объектов и тщательность их исследования. Поэтому требование экономичности по T м - одно из основных требований к МО САПР.

При использовании в САПР многопроцессорных ВС уменьшить время счета можно с помощью параллельных вычислений. В связи с этим один из показателей экономичности МО - его приспособленность к распараллеливанию вычислительного процесса.

В САПР целесообразно иметь библиотеки с наборами моделей и методов, перекрывающими потребности всех пользователей САПР.

Используемая память

Затраты памяти являются вторым после затрат машинного времени показателем экономичности МО. Они определяются длиной программы и объемом используемых массивов данных. Несмотря на значительное увеличение емкости оперативной памяти в современных ЭВМ, требование экономичности по затратам памяти остается актуальным. Это связано с тем, что в мультипрограммном режиме функционирования ЭВМ задача с запросом большого объема памяти получает более низкий приоритет и в результате время ее пребывания в системе увеличивается.

Улучшить экономичность по затратам оперативной памяти можно путем использования внешней памяти. Однако частые обмены данными между оперативной памятью и внешней могут привести к недопустимому росту T м. Поэтому при больших объемах программ и массивов обрабатываемой информации целесообразно использовать МО, допускающее построение оверлейных программных структур и реализующее принципы диакоптической обработки информации .

Математическое моделирование объектов и устройств автоматизации в САПР

Требования к математическим моделям

Математические модели (ММ) служат для описания свойств объектов в процедурах АП. Если проектная процедура включает создание ММ и оперирование ею с целью получения полезной информации об объекте, то говорят, что процедура выполняется на основе математического моделирования.

К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности .

Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Математическая модель отражает лишь некоторые свойства объекта.

Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Пусть отражаемые в ММ свойства оцениваются вектором выходных параметров Y = (y 1 , y 2 , ..., y m). Тогда, обозначив истинное и рассчитанное с помощью ММ значения j-го параметра через y jист и y jm соответственно, определим относительную погрешность E j расчета параметра Y j как

E j = (y jm - y jист)/y jист (2.1)

Получена векторная оценка Е = (E 1 , E 2 , ..., E m). При необходимости сведения этой оценки к скалярной используют какую-либо норму вектора Е, например

E m = ||E|| = maxE j .

Адекватность ММ - способность отражать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних Q и внутренних Х, погрешность E j зависит от значений Q и Х.

Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности E м в некоторой точке Q ном пространства внешних переменных, а используют модель с рассчитанным вектором при различных значениях Q. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных - области адекватности (АО) математической модели:

OA = {Q|E m , d},

где d - заданная константа, равная предельно допустимой погрешности модели.

Экономичность ММ характеризуется затратами вычислительных ресурсов. Чем они меньше, тем модель экономичнее.

Классификация математических моделей

Рассмотрим основные признаки, классификации и типы ММ, применяемые в САПР .

По характеру отображаемых свойств объекта ММ делятся на структурные и функциональные.

Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.

В топологических ММ отображаются состав и взаимосвязи элементов. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т.п.

В геометрических ММ отображаются свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; совокупностью алгебраических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т.п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации, при задании исходных данных на разработку технологических процессов изготовления деталей. Используют несколько типов геометрических ММ.

Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.

По степени детализации описания в пределах каждого иерархического уровня выделяют полные ММ и макромодели.

Полная модель - эта модель, в которой фигурируют фазовые переменные, характеризующие состояния всех имеющихся межэлементных связей (т.е. состояние всех элементов проектируемого объекта).

Макромодель - ММ, в которой отображаются состояния значительно меньшего числа межэлементных связей, что соответствует описанию объекта при укрупненном выделении элементов.

По способу представления свойств объекта функциональные ММ делятся на аналитические и алгоритмические.

Аналитические ММ представляют собой явные выражения выходных параметров как функций входных и внутренних параметров.

Алгоритмические ММ выражают связи выходных параметров с параметрами внутренними и внешними в форме алгоритма.

Имитационная ММ - это алгоритмическая модель, отражающая поведение исследуемого объекта во времени при задании внешних воздействий на объект.

Математические модели на микро-, макро- и метауровнях

Описания технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и с возможностями ЭВМ оперировать описаниями моделей в процессе их преобразования при проектировании. Однако выполнить это требование в рамках некоторого единого описания, не расчленяя его на отдельные составные части, удается лишь для простых изделий. Как правило, требуется структурирование описаний и соответствующее расчленение представлений о проектируемых объектах на иерархические уровни и аспекты. Это позволяет распределять работы по проектированию сложных объектов между подразделениями проектной организации, что способствует эффективности и производительности труда проектировщиков .

Использование принципов блочно-иерархического подхода к проектированию структур математических моделей проектируемых объектов позволяет формализовать процесс их написания. Количество иерархических уровней при моделировании определяется сложностью проектируемых объектов и возможностью средств проектирования. Однако иерархические уровни большинства предметных областей можно отнести к одному из трех обобщенных уровней, называемых далее микро-, макро- и метауровнями .

В зависимости от места в иерархии описания математические модели делятся на ММ, относящиеся к микро-, макро- и метауровням.

Особенностью ММ на микроуровне является отражение физических процессов, протекающих в непрерывном пространстве и времени. Типичные ММ на микроуровне - дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрические потенциалы и напряжения, давления и температуры и т.п. Возможности применения ММ в ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.

На макроуровне используют укрупненную дискретизацию пространства по функциональному признаку, что приводит к представлению ММ на этом уровне в виде систем обыкновенных дифференциальных уравнений (ОДУ). В этих уравнениях независимой переменной является время t, а вектор зависимых переменных составляют фазовые переменные, характеризующие состояние укрупненных элементов дискретизированного пространства. Такими переменными являются силы и скорости в механических системах, напряжения и токи в электрических системах, давления и расходы жидкостей и газов в гидравлических и пневматических системах и т.п. Системы ОДУ являются универсальными моделями на макроуровне, пригодными для анализа как динамических, так и установившихся состояний объектов. Модели для установившихся режимов можно также представить в виде систем алгебраических уравнений. Порядок системы уравнений зависит от числа выделенных элементов объекта. Если порядок системы приближается к 10000, то оперирование моделью становится затруднительным и поэтому необходимо переходить к представлениям на метауровне .

На метауровне в качестве элементов принимают достаточно сложные совокупности деталей. Метауровень характеризуется большим разнообразием типов используемых ММ. Для многих объектов ММ на метауровне по-прежнему представляются системами ОДУ. Однако так как в моделях не описываются внутренние фазовые переменные элементы, а фигурируют только фазовые переменные, относящиеся к взаимным связям элементов, укрупненное представление элементов на метауровне означает получение ММ приемлемой размерности для существенно более сложных объектов, чем размерность ММ на макроуровне.

В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и токов как непрерывных функций времени .

Применение тензорных представлений об объектах проектирования дает возможность использовать для получения ММ сложных технических систем методы диакоптики.

Исследование сложных систем по частям реализуется в диакоптических методах исследования. Отличие диакоптического подхода проектирования от блочно-иерархического заключается в том, что диакоптика основана на использовании структурных особенностей анализируемых схем и выражающих их матриц, а не на принятии каких-либо упрощающих допущений. В диакоптических методах производится расчленение математических моделей на части, исследуемые самостоятельно .

Расчленение математических моделей на части позволяет упорядочить и минимизировать количество обменов информацией между оперативной и внешней памятью при анализе сложных систем, а также выбирать для исследования каждой части наиболее выгодные режимы анализа. Эти обстоятельства делают диакоптические методы экономичными по затратам машинных времени и оперативной памяти .

Макромоделирование лежит в основе направления, связанного с рациональным выбором математических моделей элементов при построении математической модели системы. Макромоделирование реализует возможность использования при анализе одного и того же объекта нескольких моделей, различающихся сложностью, точностью и полнотой отображения свойств объекта, трудоемко-стью требующихся вычислений и т.п.

При макромоделировании должны выполняться условия:

    адекватности модели (выполнение данного условия требует от инженера учета целей решения каждой конкретной задачи и степени влияния параметров выделяемых элементов на результаты решения этой задачи);

    большей экономичности создания макромоделей элементов и их дальнейшего использования по сравнению с решением задачи на основе полной математической модели (обычно это условие выполняется при использовании макромоделей для элементов типовых или, по крайней мере, часто встречающихся в данной системе);

Событийность анализа заключается в том, что при имитации процессов, протекающих в исследуемом объекте, в каждый момент модельного времени вычисления проводятся только для небольшой части математической модели объекта. Эта часть включает в себя те элементы, состояние которых на очередном временном шаге может измениться. Использование принципа событийности существенно повышает экономичность анализа на функционально-логическом и системном уровнях проектирования.

Рациональное использования эвристических способностей человека в интерактивных процедурах позволяет инженеру вмешиваться в ход вычислений и выбирать наиболее перспективные продолжения на основе эвристических оценок. Это выгодно во всех тех проектных процедурах, в которых следование только формальным критериям выбора дальнейших действий связано с чрезмерными затратами машинного времени. При исследовании сложных элементов и устройств автоматизации часто используют методы многовариантного анализа и теорию чувствительности.

Основными видами многовариантного анализа в задачах проектирования являются анализы чувствительности и статистический.

Цель анализа чувствительности - определение коэффициентов чувствительности, называемых также коэффициентами влияния:

a ji = δY i /δx i ; b ji = a ji x iном /Y iном (2.1)

где a ji и b ji - абсолютный и относительный коэффициенты чувствительности выходного параметра y j к изменениям внутреннего параметра X i ; y iном и x iном - номинальные значения параметров y j и X i . Результаты анализа чувствительности m выходных параметров к изменениям n внутренних параметров представляют собой mn коэффициентов чувствительности, составляющих матрицу абсолютной или относительной чувствительности .

Анализ чувствительности применяется, если параметры Х и Q можно считать непрерывными величинами, а параметры y j являются дифференцируемыми функциями своих аргументов X i и q kном.

Результаты анализа чувствительности используются при решении таких важных задач, как параметрическая оптимизация, расчет допусков, оценка точности выходных параметров. Именно по значениям коэффициентов чувствительности разработчик отделяет существенно влияющие параметры от мало влияющих, определяет направления изменений внутренних параметров для улучшения выходных параметров, оценивает допустимые отклонения параметров Х и Q для выполнения точностных требований к параметрам Y .

В ряде случаев для получения результатов математических экспериментов используют метод приращений. Это основной метод анализа чувствительности в инвариантном МО САПР. Метод

  • приращений
  • есть метод численного дифференцирования зависимости

    Алгоритм метода приращений включает в себя (n + 1)-кратное обращение к модели для вычисления Y, где n - количество варьируемых параметров, т.е. таких параметров (или q k), влияние которых на Y исследуется. В первом варианте задаются номинальные значения аргументов и, следовательно, результатом обращения к модели будет номинальное значение Y ном = (Y 1ном,Y 2ном, ..., Y mном) вектора Y. В очередном (i + 1)-м варианте среди оставшихся n вариантов задается отклонение... x i от номинального значения только по одному из варьируемых параметров. В результате выполнения (i + +1)-го варианта получают для вектора Y значение Y i = (y 1i , y 2i , ..., y mi), по которому оценивается очередной i-й столбец матрицы абсолютной чувствительности A i = (Y i - Y ном)/...x i . Любой из найденных коэффициентов a ji легко пересчитать в коэффициент b ji в соответствии с данными работы .

    Основное достоинство метода приращений - его универсальность: метод применим к любым непрерывным математическим моделям.

    Однако у метода приращений имеются и существенные недостатки: невысокая точность, что характерно для операций численного дифференцирования; сравнительно большая трудоемкость вычислений. Трудоемкость вычислений оценивается количеством обращений к модели, так как объем вычислений в алгоритмических моделях обычно велик и заметно превышает трудоемкость выполнения процедур по обработке результатов обращений к моделям. В методе приращений требуется n + 1 вариант обращения к модели .

    Прямой и вариационный методы . Эти методы анализа чувствительности менее универсальны, чем метод приращений, но позволяют повысить точность или снизить затраты машинного времени. Они основаны на интегрировании специальных систем обыкновенных дифференциальных уравнений, относятся к специальному ма тематическому обеспечению и применяются в подсистеме схемотехнического проектирования.

    Регрессионный метод . В регрессионном методе анализа чувствительности коэффициенты чувствительности отождествляются с коэффициентами регрессии, рассчитываемыми в процессе статистического анализа по методу Монте-Карло. Этот метод требует выполнения очень большого объема вычислений; его применение выгодно, если в каком-либо маршруте проектирования нужно решать задачи как статистического анализа, так и анализа чувствительности. Тогда затраты времени, дополнительные к затратам на статистический анализ, будут пренебрежимо малы .

    Статистический анализ

    Цель статистического анализа - получение оценок рассеяния выходных параметров Y и вероятностей выполнения заданных условий работоспособности для проектируемого объекта. В случае объектов типа систем массового обслуживания сами выходные параметры имеют вероятностный смысл, тогда цель статистического анализа - расчет таких параметров. Причинами рассеяния выходных параметров Y являются нестабильность внешних параметров Q и случайный характер внутренних параметров Х. Результатами статистического анализа могут быть гистограммы выходных параметров, оценки математических ожиданий M j и среднеквадратичных отклонений... y j каждого из выходных параметров..y j от номинальных значений, оценки коэффициентов корреляции r ji между параметрами y j и x i , а также выходные параметры систем массового обслуживания. В качестве исходных данных фигурируют статистические сведения о рассеянии внутренних параметров и данные ТЗ о допустимых диапазонах изменения или законах распределения внешних параметров.

    Статистический анализ исключительно важен, поскольку его результаты позволяют прогнозировать процент выхода годных изделий при их серийном изготовлении, т.е. оценить серийнопригодность проектируемого объекта. Если в исходных данных отразить старение внутренних параметров - их изменение в процессе эксплуатации и хранения под действием различных физико-химических факторов, то результаты статистического анализа можно непосредственно использовать для оценки надежности.

    Наибольшее распространение в САПР при статистическом анализе получили методы наихудшего случая и статистических испытаний .

    Метод наихудшего случая . Этот метод служит для определения диапазонов возможного рассеяния выходных параметров без оценки плотности распределения этих параметров.

    Пусть на некоторый выходной параметр у задано условие работоспособности в виде у < тт. Тогда интерес представляет верхняя граница диапазона рассеяния, так как большие значения у наиболее опасны с точки зрения невыполнения условия работоспособности. Верхняя граница диапазона рассеяния достигается в наихудшем случае, когда все аргументы функциональной зависимости y = f(X) принимают самые неблагоприятные значения. Самым неблагоприятным значением аргумента X i будет максимально возможное значение X imax = x iном + x i при выполнении условий у < тт и dy/dx i > 0 или у > тт и dy/dx i < 0. Самым неблагоприятным значением аргумента X i будет минимальное значение X imin = x iном - x i , если (Y < тт dy/dx i < 0) V (Y > тт dy/dx i > 0). Здесь x i - допуск на внутренний параметр X i . При этом предполагается, что знаки коэффициентов влияния остаются неизменными в пределах рассматриваемой области.

    Алгоритм метода наихудшего случая включает в себя следующие операторы:

      Анализ чувствительности, в результате которого определяются коэффициенты чувствительности dy/dx i .

      Задание параметрам X i самых неблагоприятных значений.

      Расчет выходных значений параметров при неблагоприятных внутренних.

    Выполнение анализа объекта в наихудшем случае. Каждому выходному параметру соответствует свой наихудший случай. Если объект характеризуется m выходными и n внутренними параметрами, то операторы 2 и 3 алгоритма повторяются m раз и всего требуется выполнить m + n + 1 вариантов обращения к модели объекта. Преимущество метода наихудшего случая в том, что для его применения не требуется знания законов распределения внутренних параметров. Достаточно знать лишь допуски x i . Недостаток метода в том, что результаты анализа в наихудшем случае могут ввести в заблуждение пользователя относительно реального рассеяния выходных параметров.

    Метод Монте-Карло (метод статистических испытаний) . Этот метод позволяет получить более полные статистические сведения о выходных параметрах исследуемого объекта. Алгоритм метода статистических испытаний включает в себя следующие основные операторы:

      Задание значений внутренних и внешних параметров (аргументов зависимости Y от Х и Q в очередном статистическом испытании).

    1. Накопление статистических сумм.

      Обработка накопленных сумм для получения результатов статистического анализа.

    Операторы 1-3 выполняются в каждом испытании и могут быть распараллелены. Оператор 4 завершает статистический анализ. Задание значений случайных параметров выполняется в соответствии с их законами распределения. Подпрограммы выработки псевдослучайных чисел для величин, распределенных по таким законам, как нормальный, равномерный, экспоненциальный, имеются в составе общего программного обеспечения большинства ЭВМ. Однако в практике проектирования могут встретиться задачи с коррелированными исходными данными, имеющими любое распределение. Часто исходные данные получают как результаты измерений параметров на партии изделий и представляют в виде гистограмм. Тогда алгоритм задания случайных значений параметров целесообразно построить на основе следующего преобразования: X = 0(AZ), где 0 - оператор преобразования значений нормально распределенных величин в значения внутренних параметров, имеющих заданные распределения; Z - реализация n-мерного некоррелированного случайного вектора, элементы которого имеют нормированное нормальное распределение, т.е. характеризуются нулевыми математическими ожиданиями и единичными дисперсиями; Х - реализация n-мерного случайного вектора внутренних параметров в очередном статистическом испытании; А - матрица преобразования вектора Z в нормальный вектор с коррелированными элементами .

    Методика получения математических моделей элементов и устройств автоматизации

    В общем случае процедура получения математических моделей элементов и устройств включает в себя следующие операции:

    Моделирование технических объектов на метауровне

    На метауровне используется укрупненное математическое описание объектов.

    Одним из наиболее общих подходов к анализу объектов на метауровне является функциональное моделирование , развитое для анализа систем автоматического управления. В рамках этого подхода принимается ряд упрощающих предположений. Во-первых, на метауровне, как и на макроуровне, объект представляется в виде совокупности элементов, связанных друг с другом ограниченным числом связей. При этом для каждого элемента связи разделяются на входы и выходы. Во-вторых, элементы считаются однонаправленными, т.е. такими, в которых входные сигналы могут передаваться к выходам, но сигналы на выходах не могут влиять на состояние входов через внутренние связи элемента. Сигналами при этом называют изменения фазовых переменных. В-третьих, состояние любого выхода не зависит от нагрузки, т.е. от количества и вида элементов, подключенных к этому выходу. В-четвертых, состояние любой связи характеризуется не двумя, а одной фазовой переменной (типа потенциала или типа потока), что непосредственно вытекает из предыдущего допущения.

    Принятие подобных допущений приводит к упрощению математических моделей элементов и методов получения математических моделей систем.

    Функциональное моделирование широко используется для моделирования аналоговой радиоэлектронной аппаратуры; систем автоматического управления и регулирования с элементами не только электрической, но и иной природы; энергетических систем, функционирование которых связано с передачей между частями систем энергии, количества движения, давления и т.п.

    Другим достаточно общим подходом к анализу объектов на метауровне является их представление моделями систем массового обслуживания (СМО). Модели СМО применимы во всех тех случаях, когда исследуемый объект предназначен для обслуживания многих заявок, поступающих в СМО в нерегулярные моменты времени. Особенностью моделей СМО является наличие в них элементов двух различных типов: обслуживающих аппаратов, иначе называемых ресурсами, и заявок, называемых также транзактами.

    Поток заявок характеризуется временами поступления заявок. В общем случае поток можно рассматривать как случайный процесс, задаваемый функцией распределения промежутков времени между моментами поступления двух соседних заявок. Основной характеристикой потока заявок является интенсивность I, равная среднему числу заявок, поступающих в единицу времени (I/s = T - средний интервал времени между поступлениями двух соседних заявок).

    Работа обслуживающего аппарата характеризуется длительностью обслуживания заявок - промежутком времени, необходимым для обслуживания. В общем случае это случайная величина, характеризуемая некоторым законом распределения. Математическое ожидание этого закона распределения - среднее время обслуживания заявки.

    Законы распределения случайных величин при моделировании СМО могут быть произвольными, но наиболее часто используются распределения экспоненциальное, δ-распределения Эрланга, нормальное. Моделирование последовательности случайных чисел (в СМО это интервалы времени между поступлениями заявок и времени обслуживания), распределенных по заданному закону, выполняется на основе программного датчика чисел с равномерным распределением в интервале от 0 до 1 .

    Модели СМО должны описывать процессы прохождения заявок через СМО. Состояние системы в каждый момент времени выражается совокупностью переменных (аналогов фазовых переменных), имеющих преимущественно дискретный характер. Так, состояние обслуживающего аппарата описывается переменной k, которая может принимать одно из двух возможных значений - «свободен», «занят», а также длинами очередей на входах обслуживающего аппарата. Очередей может быть несколько, если в СМО фигурируют заявки нескольких различных типов (приоритетов). Состояние каждой заявки описывается переменной, значениями которой могут быть «обслуживание», «ожидание». Результатом анализа СМО должны быть значения выходных параметров (типичными выходными параметрами являются производительность СМО, среднее и максимальное время обслуживания заявок, средние длины очередей и коэффициенты загрузки обслуживающих аппаратов, вероятности обслуживания заявок за время не выше заданного и т.п.). Исходные данные при моделировании выражаются параметрами обслуживающих аппаратов и параметрами источников заявок. Обычно модели обслуживающих аппаратов и источников заявок представляют собой законы распределения таких величин, как время обслуживания заявки, интервал времени между появлениями заявок. Поэтому внутренними и внешними параметрами, значения которых указываются в выходных данных, являются параметры этих законов распределения. Получение исходных данных и обеспечение их достоверности - важная проблема анализа объектов на метауровне.

    Математические модели СМО могут быть аналитическими и имитационными.

    Аналитическая модель СМО представляет собой совокупность явных зависимостей выходных параметров от параметров внутренних и внешних. Однако получение аналитических моделей оказывается возможным лишь в отдельных случаях сравнительно простых СМО. В общем случае используются имитационные модели, несмотря на значительные затраты вычислительных ресурсов, связанных с их реализацией .

    Имитационная модель СМО представляет собой алгоритм, описывающий изменения переменных состояния на моделируемом отрезке времени. Предполагается, что изменение состояния любой переменной, называемое событием, происходит мгновенно в некоторый момент времени. Имитационное моделирование СМО - воспроизведение последовательности событий в системе при вероятностном характере параметров системы. Имитация функционирования системы при совершении большого числа событий позволяет произвести статистическую обработку накопленных результатов и оценить значения выходных параметров.

    Алгоритм имитационного моделирования СМО можно кратко описать следующим образом. Опрашиваются входные источники заявок, в результате определяются моменты появления заявок на входах СМО. Сведения об этих событиях заносятся в список событий, который упорядочен по моментам наступления событий. Далее процесс имитации управляется списком событий. Из этого списка выбирается ближайшее по времени совершения событие и имитируется продвижение в СМО заявки, связанной с этим событием. Продвижение имитируется до тех пор, пока заявка не окажется задержанной в некотором обслуживающем аппарате. Если при этом заявка входит в состояние обслуживания, то по математической модели обслуживающего аппарата определяется длительность обслуживания и, следовательно, становится предвидимым момент наступления очередного события, связанного с этой заявкой. Сведения об этом будущем событии заносятся в список событий. Далее аналогичным образом выбирается ближайшее событие из списка событий и производится имитация поведения заявки, связанной с этим событием, и т.п. В процессе прохождения заявок по СМО накапливаются данные, необходимые для последующего расчета выходных параметров.

    В настоящее время в системах автоматизации проектирования все более широкое применение находят различные типы мультипроцессорных систем. Особенностью таких систем является наличие нескольких вычислительных процессоров, которые, как правило, имеют общую оперативную память и общие внешние устройства. Мультипроцессорные системы применяются в том случае, когда целесообразно распараллелить процесс вычисления или использовать одни и те же вычислительные ресурсы разными задачами. При оценке эффективности организации САПР рассматривается как система массового обслуживания .

    Постановка задачи автоматического формирования математических моделей систем на макроуровне

    Требования к методам в САПР, обусловленные особенностями математических моделей

    Использование ММ объекта в виде системы дифференциальных уравнений в частных производных возможно только для очень простых технических систем, и даже в этом случае порядок аппроксимирующей алгебраической системы уравнений при моделировании в трехмерном пространстве может достигать 10 000 000 и более. Поэтому при моделировании на макроуровне в технической системе выделяются достаточно крупные элементы, которые в дальнейшем рассматриваются в виде неделимой единицы. Непрерывной независимой переменной остается (в сравнении с моделированием на микроуровне) только время. Математической моделью технической системы на макроуровне будет система ОДУ.

    В САПР целесообразно использовать математические и программные средства, обеспечивающие моделирование всей номенклатуры проектируемых объектов и способные адаптироваться к изменяющимся условиям эксплуатации. Эти свойства достигаются, если применяемые средства имеют высокую степень универсальности. Получению универсальных средств способствует использование аналогий между подсистемами различной физической природы и между моделирующими их компонентными и топологическими уравнениями .

    При выборе или разработке метода (алгоритма) анализа в САПР прежде всего устанавливается область его применения. Чем шире круг задач, которые объявлены как допустимые для решения данным методом, тем универсальнее метод.

    В большинстве случаев четкая и однозначная формулировка ограничений на применение метода затруднительна. Возможны ситуации, когда оговоренные заранее условия применения метода выполняются, однако удовлетворительное решение задачи не получается. Следовательно, вероятность Р успешного применения метода в оговоренном заранее классе задач меньше единицы. Эта вероятность является количественной оценкой важного свойства методов и алгоритмов, называемого надежностью .

    Отказы в решении задач могут проявляться в необходимости итерационного процесса, в превышении погрешностями предельно допустимых значений и т.п. Причинами отказов могут быть такие факторы, как плохая обусловленность ММ, ограниченная область сходимости, ограниченная устойчивость. Так, итерации по методу Ньютона при решении систем нелинейных алгебраических уравнений сходятся только в случае выбора начального приближения в достаточно малой окрестности корня.

    В САПР должны применяться надежные методы и алгоритмы. Для повышения надежности часто прибегают к комбинированию различных методов, автоматической параметрической настройке методов и т.п. В конечном счете добиваются значений Р, равных или близких к единице.

    Применение методов с Р = 1 хотя и нежелательно, но допускается в отдельных частных случаях при обязательном условии, что некорректное решение задачи распознается и отсутствует опасность принять такое решение за правильное.

    К методам и алгоритмам анализа, как и к ММ, предъявляют требования точности и экономичности. Точность характеризуется степенью совпадения точного решения уравнений заданной модели и приближенного решения, полученного с помощью оцениваемого метода, а экономичность - затратами вычислительных ресурсов на реализацию метода (алгоритма).

    Оценки точности и экономичности могут быть теоретические и экспериментальные.

    Теоретические оценки погрешностей, трудоемкости требуемых вычислений и объемов, участвующих в переработке массивов, обычно выполняются при принятии ряда упрощающих предположений о характере используемых ММ. Примерами могут служить предположения о гладкости или линейности функциональных зависимостей, некоррелированности параметров и т.п. Несмотря на приближенность теоретических оценок, они представляют значительную ценность, так как обычно характеризуют эффективность применения исследуемого метода не к одной конкретной модели, а к некоторому классу моделей. Например, именно теоретические исследования позволяют установить, как зависят затраты машинного времени от размерности и обусловленности ММ при применении методов численного интегрирования систем ОДУ.

    Однако теоретические оценки удобны для определения характера таких зависимостей, но числовые значения показателей эффективности для конкретных случаев могут быть весьма приближенными.

    Поэтому находят применение также экспериментальные оценки, основанные на определении показателей эффективности на наборе специально составляемых ММ, называемых тестовыми. Тестовые ММ должны отражать характерные особенности моделей того класса объектов, которые являются для рассматриваемой предметной области. Результаты тестирования используются для сравнительной оценки методов и алгоритмов при их выборе для реализации в программном обеспечении САПР .

    Программные средства автоматизации конструирования, моделирования и проектирования


    1. Пакеты прикладных программ САПР

    2. SCADA-системы

    3. Инструментальная среда разработки приложений сбора данных и управления Genie


    1. Пакеты прикладных программ САПР

    САПР - признанная область применения вычислительной техники. Компьютер может предоставить конструкторам и технологам полный набор возможностей САПР и, освободив их от рутинной работы, дать возможность заниматься творчеством, что резко повышает производительность труда.

    Приближение САПР к конструктору позволило резко повысить производительность самих САПР, распространение которых сдерживалось трудностью алгоритмизации конструкторских задач. Действительно, невозможно к каждому конструктору “приставить” программиста. Это противоречие может быть устранено только широким распространением прикладных программных средств, “общающихся” с конструктором на “естественном” языке. Следует отметить, что это справедливо не только для компьютерной графики. Практически все современное программное обеспечение ориентируется на пользователя, дружелюбно общаясь с ним понятным ему способом и предоставляя ему полную свободу действий. Такое “общение” человека с компьютером возможно только в интерактивном (диалоговом) режиме, когда пользователь тут же на экране видит результат своих действий. САПР также ориентированы на работу в интерактивном режиме, предоставляя проектировщику оперативный доступ к графической информации, простой и эффективный язык управления ее обработкой с практически неограниченными возможностями контроля результатов. В первую очередь это относится к графическому диалогу, поскольку именно графика (чертежи, схемы, диаграммы и т.п.) как наиболее эффективный способ представления информации, занимает привилегированное положение в САПР. Таким образом, удается автоматизировать самую трудоемкую часть работы - по оценкам специалистов конструкторских бюро, в процессе традиционного проектирования на разработку и оформление чертежей приходится около 70% от общих трудозатрат конструкторской работы (15% - на организацию и ведение архивов, и 15% - собственно на проектирование, включающее в себя разработку конструкции, расчеты, согласование со смежными областями и т.д.).

    Многие современные программные системы, ориентированные на проектирование промышленных изделий, имеют достаточно большой арсенал возможностей интерактивной графики, обеспечивая возможность создания и редактирования двумерных изображений, состоящих из проекций изделия, штриховки, размеров и т.д., а также формирования реалистичных трехмерных изображений проектируемых изделий, построенных из исходных данных чертежа с удалением невидимых линий, с учетом различных способов освещения, задания параметров структуры поверхностей и т.п. При этом САПР предоставляют принципиально недостижимые ранее возможности. Фактически конструктор попадает в новую среду - среду компьютерной графики. И качество пакета САПР едва ли не в первую очередь определяется тем, насколько труден для конструктора переход к новой технологии при использовании того или иного пакета.

    В настоящее время существует огромное количество САПР различной сложности и назначения. Очевидно, что пользователь будет выбирать систему, согласовывая необходимость графических возможностей со стоимостью системы и технических средств, которые обладают требуемыми возможностями. Например, стоимость АРМ (“workstation”) Apollo или SAN, обладающих всеми мыслимыми на сегодняшний день возможностями, существенно выше стоимости любого обычного ПК - это просто другой класс машин. Для большинства чертежно-конструкторских работ требуются более скромные, однако все же достаточно широкие возможности, и ряд систем способен их удовлетворить.

    Среди систем малого и среднего класса в мире наиболее популярна система AutoCad фирмы AutoDesk, а также системы Pcad, OrCAD (разработка и моделирование электронных устройств, в основном - печатных плат), ArchiCAD (архитектура), «Базис», «Компас», «SolidWorks» (механика), каждая из которых имеет свои преимущества и недостатки и предпочтительную область применения.

    Фирма AutoDesk является одним из признанных лидеров в области разработки САПР, а созданный ею пакет AutoCad - одним из лучших. Это сложная и разветвленная по своей структуре система, которая в то же время легко управляется при помощи простых и ясных команд. Эта система дает пользователю ПК возможности, ранее доступные только на больших и дорогих вычислительных системах. AutoCad обладает эффективной системой ведения диалога с пользователем при помощи нескольких меню. Использование слоев также предоставляет дополнительные удобства для проектировщика, позволяя при наложении слоев с нарисованными на них изображениями отдельных деталей контролировать их совместимость при общей компоновке, а также держать “про запас” любое число различных вариантов деталей и, включая либо выключая слои, выборочно вводить их в общую компоновку. Законченные чертежи можно хранить в виде комплекта слайдов с возможностью их автоматического просмотра, причем доступность большого количества цветов делает работу с такой системой эстетически приятной.

    AutoCad - универсальный графический пакет, предназначенный для любого специалиста, работающего с технической графикой. Фирма AutoDesk, ориентируясь на самый широкий круг пользователей, заложила в пакет богатые возможности адаптации к любым предметным областям. Именно поэтому AutoCad завоевал широкую популярность и продолжает сохранять свои позиции на мировом рынке.

    Кроме автоматизации собственно чертежно-графических работ, AutoCad с его расширениями (AutoShade, AutoFlix, 3D-STUDIO и др.) предоставляет следующие возможности:

    * графическое моделирование, т.е. использование компьютера в САПР в качестве мощного вычислительного средства, позволяющего без особых навыков программирования работать со сложными пространственными моделями;

    * создание и ведение информационной базы данных (архива) чертежей;

    * создание библиотеки стандартных элементов чертежей, относящихся к какой-то предметной области, с тем чтобы строить новые чертежи из уже созданных ранее элементов;

    * параметризация чертежей - построение деталей и чертежей с новыми размерами на основе один раз нарисованного чертежа (модели);

    * создание демонстрационных иллюстраций и мультфильмов.

    Фирма AutoDesk на протяжении нескольких лет совершенствует свою систему - в настоящее время существует несколько версий, отличающихся своими функциональными возможностями. Все они совместимы “снизу вверх”, т.е. чертежи, созданные на ранних версиях, обрабатываются на более поздних. Наиболее широко сейчас используются версии с 10-й по 14-ю. Последняя версия AutoCAD 2000.

    КОМПАС 5 представляет собой современный программный продукт, функционирующий под управлением операционной системы Windows 95/98/NT.

    Система имеет настраиваемый оконный интерфейс, соответствующий стандартам Windows, и управляется с помощью команд текстового меню, панелей кнопок, контекстно-зависимых (динамических) меню. Оформление экрана, состав кнопочных панелей и любые параметров системы могут быть настроены непосредственно во время сеанса работы. Пользователь может формировать собственные кнопочные панели, в том числе подключая функции прикладных библиотек в качестве команд.

    Поддерживается одновременная работа с несколькими документами, а также отображение каждого документа в нескольких окнах. Реализованы различные режимы резервного копирования загруженных документов.

    Печать разработанных документов может выполняться на любых устройствах (принтерах или плоттерах), поддерживаемых Windows. Реалистичное изображение документов в режиме предварительного просмотра позволяет скомпоновать на поле вывода и распечатать одновременно несколько документов. Обеспечена гибкая настройка всех параметров печати. В состав системы входит утилита для разработки собственных драйверов перьевых устройств вывода (плоттеров).

    КОМПАС 5 поддерживает технологию OLE, что позволяет вставить документы КОМПАС в любой документ, являющийся OLE-контейнером (например, в документ MS Word). Созданный таким образом OLE-объект в дальнейшем можно просматривать при помощи КОМПАС-Viewer или редактировать средствами КОМПАС. Если при вставке OLE-объекта сохранена связь с источником, то все вносимые в источник изменения будут отражаться в документе-контейнере.

    Основными компонентами КОМПАС 5 являются КОМПАС-ГРАФИК – редактор конструкторской документации и КОМПАС-3D – система трехмерного твердотельного моделирования.

    Графический редактор позволяет разрабатывать выпускать различные документы - эскизы, чертежи, схемы, плакаты и т.д. В системе предусмотрены два вида графических документов - чертежи и фрагменты. Чертеж обладает рамкой и основной надписью, в нем можно создавать до 255 видов (проекций, разрезов, сечений), имеющих разный масштаб изображения. На листе чертежа могут быть размещены спецификация, технические требования, знак неуказанной шероховатости. Фрагмент содержит изображение в натуральную величину без элементов оформления (рамки, технических требований и т.п.).

    Любой вид чертежа или фрагмент может содержать до 255 слоев, каждый из которых можно делать текущим или недоступным для редактирования или невидимым.


    Рис.1. Экранная форма КОМПАС.

    КОМПАС-ГРАФИК позволяет работать со всеми типами графических примитивов, необходимыми для выполнения любого построения. К ним относятся точки, прямые, отрезки, окружности, эллипсы, дуги окружностей и эллипсов, многоугольники, ломаные линии, кривые NURBS (в том числе кривые Безье). Разнообразные способы и режимы построения этих примитивов (например, команды создания фасок, скруглений, эквидистант, построения отрезков и окружностей, касательных к объектам и т.п.) избавляют пользователя от необходимости производить сложные вспомогательные построения. Для ускорения построений можно использовать локальные системы координат, разномасштабную сетку и механизм объектных привязок.



    Похожие статьи