Автоматизированная система учета энергоресурсов. Технический учёт энергоресурсов предприятия

Коммерческий учет электроэнергии осуществляется для обеспечения финансовых расчетов между предприятиями, генерирующими и распределяющими электроэнергию, и потребителями. Также применяется и технический учет энергии, который призван обеспечить предоставление информации о расходовании электричества на предприятии с разбивкой по отдельным подразделениям, технологическим цепочкам и единицам оборудования, относительно к единице производимой продукции и т.д.

Как правило, на современных предприятиях, особенно на энергоемких производствах, коммерческий и технический учет электроэнергии применяется в комплексе. Это дает возможность обеспечить прозрачность расчетов и открывает широкие возможности для энергосбережения. Для обеспечения коммерческого учета электроэнергии, а также и других энергоресурсов широкое применение получили автоматизированные системы АСКУЭ и АИИС КУЭ.

Коммерческий учет энергии при помощи автоматизированных систем

Коммерческий учет электроэнергии с использованием АСКУЭ и АИИС КУЭ применяется на предприятиях, осуществляющих генерацию и распределение электроэнергии для обеспечения автоматизированного дистанционного контроля производимой, транспортируемой и отпущенной энергии с максимальной точностью измерения. В то же время совершенствование технологий, появление новых приборов учета и новых интерфейсов обмена данными позволило значительно упростить такие системы, снизить их стоимость и сделать доступными для потребителей любого уровня. Благодаря этому сегодня системы АСКУЭ и АИИС КУЭ все более широко внедряются и эффективно используются как в промышленности, так и в коммунальной сфере.

Внедрение систем АСКУЭ и АИИС КУЭ сегодня фактически является необходимостью для многих промышленных предприятий с разветвленной структурой или энергоемким производством. Автоматизированный электронный учет обеспечивает максимальный уровень точности измерений и позволяет получать большой объем дополнительной информации, необходимой для оптимизации энергопотребления. Внедрение таких систем сводит практически к нулю трудозатраты на ведение учета даже при большом количестве приборов первичного учета и сложной структуре предприятия.

Автоматизированная система коммерческого учета электроэнергии выполняет следующие функции и имеет следующие возможности:

  • автоматический сбор данных с первичных измерителей и их периодическая передача на сервер;
  • долгосрочное хранение данных;
  • выполнение аналитических функций (анализ данных с целью оптимизации потребления или передачи электрической энергии);
  • выявление несанкционированного потребления электроэнергии;
  • удаленное подключение и отключение от сети конечных потребителей и т.д.

В отличии от АСКУЭ, система АИИС КУЭ представляет собой автоматизированное средство измерения, позволяющее осуществлять выход на оптовый рынок электроэнергии. Такие системы должны соответствовать требованиям ГОСТ Р 8.596-2002. Поэтому для их внедрения обязательным требованием является регистрация системы в качестве средства измерения в Госреестре, а также проведение ее аттестации контролирующим органом.

Примеры проектов по коммерческому учету электроэнергии

Компания «ЭНЕРГОАУДИТКОНТРОЛЬ» обеспечивает внедрение высокоэффективных систем автоматизированного коммерческого учета электроэнергии любого уровня сложности. Мы выполняем полный комплекс работ, начиная с проектирования системы, заканчивая ее вводом в эксплуатацию, а также осуществляем последующее обслуживание на самых выгодных условиях.

За время работы с 2003 года нами было реализовано большое количество проектов. Наши системы АСКУЭ и АИИС КУЭ используются крупнейшими отечественными корпорациями. В том числе нами были разработаны и внедрены следующие системы:

  • АСКУЭ ООО «Газпром» . Система обслуживает 127 компрессорных станций с использованием 6500 интеллектуальных приборов учета.

Сегодня нет той сферы деятельности человека, где бы он ни потреблял энергию в том или ином виде. А само развитие человеческой цивилизации прочно связано с использованием различных энергетических ресурсов для поступательного движения вперед. Причем общемировая тенденция увеличения объемов потребления энергоресурсов продолжает неуклонно расти, пусть с небольшим замедлением, но с постоянным повышением уровня качества потребления и значительным снижением издержек.

Что понимают под энергоресурсами

Под энергоресурсами принято понимать физическую среду, содержащую в тот или иной степени необходимые качества и свойства, используемые для обеспечения протекания энергогенерирующих процессов необходимых для выполнения различных видов работ и других полезных функций.

Энергоресурсы принято разделять:

  • на первичные, которые имеют непосредственно природное происхождение;
  • на вторичные, которые получают путем переработки и преобразования первичных видов.

К первичным энергоресурсам относятся все виды добываемого и ископаемого топлива, солнечная радиация, энергия ветра и воды. Причем последние относятся к экологическим, так называемым возобновляемым видам энергии.

К вторичным видам энергоресурсов относят в основном электрическую и тепловую энергию.

Необходимость учета энергоресурсов

Существующий на сегодняшний день управляемый и контролируемый рынок энергоресурсов требует от любой динамично развивающейся компании или организации детального контроля и учета потребления всех энергетических ресурсов. Это необходимо не только для возможности отслеживания производственной деятельности предприятия в реальном времени и организации финансовых расчетов за ее потребление, но и для планирования различных стратегических задач экономической политики предприятия в целом.

Электричество, тепловая энергия, природный газ и вода являются важнейшими составляющими необходимыми для производства любой продукции, при этом они являются и основными расходными статьями и составляют значительную часть себестоимости. Одним из условий, способствующих существенному уменьшению энергетических затрат в себестоимости продукции является организация и внедрение систем контроля и учета энергоресурсов.

Многие предприятия до сих пор имеют завышенную долю энергоемкости в себестоимости выпускаемой продукции. Согласно, последним данным удельные энергозатраты в валовом внутреннем продукте по основным отраслям промышленности на территории Российской Федерации фактически трехкратно превышают подобные показатели для ведущих стран Западной Европы и даже по передовым областям экономики в два раза выше, чем в Америке.

Энергосбережение актуально для любого развитого государства как в целом, так и должно быть применено для отдельных отраслей промышленности, в том числе реализовано при производстве сельскохозяйственной продукции, а также в сфере коммунального хозяйства.

Для каждого отдельного вида энергоресурса существуют свои особые требования по организации контроля и учета их потребления, которые, в свою очередь, четко определенны в действующей нормативно-технической документации и законодательной базе.

Так, одним из основополагающих документов для стимулирования рационального потребления энергоресурсов является Федеральный закон от 23 ноября 2009 года за № 261-ФЗ под редакцией от 03 июля 2016 года, который регламентирует все необходимые меры для обеспечения энергосбережения и повышения энергетической эффективности, в том числе путем внесения изменений в отдельные законодательные акты РФ.

Системы автоматизированного учета

Вне зависимости от того, где внедряется система автоматизированного учета энергоресурсов на промышленном предприятии, гостиничном комплексе или это небольшом ЖКХ, в любом случае, она должна включать подсистемы, а именно:

  • учета генерации, распределения и потребления электроэнергии;
  • учета тепловой энергии для нужд отопления и горячего водоснабжения;
  • учет потребления природного газа;
  • учет потребления питьевой и технической воды.

В свою очередь, комплексный учет энергоресурсов должен объединять все эти подсистемы, состоящие из отдельных независимых структур так, как только в этом случае, можно рассматривать всю систему учета и анализа потребления энергоресурсов предприятия в целом. Поэтому необходимо рассматривать работу каждой подсистемы в отдельности, как независимого элемента общего комплекса автоматизированной системы учета потребления энергоресурсов.

Если провести образную градацию по развитию и внедрению систем автоматизации, то наиболее разветвленную сеть имеет учет генерации и потребления электрической энергии, в том числе и по причине огромного числа потребителей. На следующих местах по количеству приборов учета и общей систематизации процессов контроля и учета можно расположить производство и потребление различных видов тепловой энергии. Наименее развитыми в плане автоматизации процессов учета являются потребления природного газа и водных ресурсов.

Финансовая составляющая автоматизации учета

Все системы учета энергоресурсов строятся для непосредственного их использования в экономической и финансовой деятельности предприятия любой формы собственности. Поэтому, с экономической точки зрения, принято различать два основных вида учетов энергоресурсов:

  • коммерческий;
  • технический.

Основной задачей коммерческой системы учета является процесс измерения и обработки количества потребленных энергоресурсов для обеспечения денежных расчетов между потребителями за использование этих ресурсов с их производителями.

В задачу технического учета входит обеспечение более полной и детальной информации о распределении потоков энергоресурсов внутри самого предприятия как по отдельным подразделениям, так и по технологическим цепочкам для анализа эффективности затрат, а также в целях построения политики энергосбережения.

Коммерческий учет является основным для предприятия и включает в себя, в том числе и вспомогательную систему, состоящую из приборов технического учета, которые не дублируют основную систему, а лишь её дополняют, обеспечивая, всю полноту расчетов и открывают ряд возможностей для внедрения мероприятий по энергосбережению.

В связи со значимостью коммерческого учета к нему предъявляют повышенные требования как к самим техническим характеристикам первичных приборов учета энергоресурсов в особенности к их классу точности и надежности, так и к построению схемы в целом по всему комплексу. Это продиктовано, прежде всего, необходимостью минимизации возможных рисков, связанных с занижением результатов измерений, которые, в свою очередь, могут приводить к различному роду финансовых убытков как энергоснабжающих предприятий, так и по всей цепочке транзитных посредников.

Цели автоматизированных систем

Автоматизированные системы коммерческого учета энергоресурсов позволяют объединять информацию со всех существующих систем контроля ресурсов, которые используют стандартизованные каналы передачи данных с возможностью осуществлять их просмотр, а также контролировать состояние и работу приборов учета. Любой современный производственный процесс требует значительных объемов разных видов энергоресурсов. Их использование невозможно без точного контроля над объемами потребления, а для этого необходимо внедрение систем комплексного учета энергоресурсов.

Автоматизация систем по контролю и учету потребления энергетических ресурсов позволяет:

  • создавать единую информационную платформу для контроля за генерацией, распределением и потреблением;
  • вести прозрачную систему учета, позволяющую производить расчет использования как по отдельным категориям производства, так и по видам;
  • повышать эффективность потребления и способствовать снижению удельных затрат путем снижения перерасхода;
  • выявлять основные источники потерь;
  • оптимизировать их распределение по отдельным производственным объектам;
  • повышать точность планирования, основываясь на сравнении показателей текущих данных и фактического потребления в предыдущие периоды;
  • реализовывать перспективные задачи по долгосрочному и оперативному прогнозированию.

Назначение

Автоматизированные системы по учету энергоресурсов могут быть построены как автономный механизм, так и в виде объединенного комплекса в едином центре по сбору технической информации и предназначаться:

  • для интеграции производственных данных потребления из различных территориально расположенных источников;
  • для автоматизации получения, обработки и анализа текущих данных потребления;
  • для своевременного информационного обеспечения оперативными и достоверными данными для организации управления рабочими и технологическими процессами;
  • для обеспечения данными предназначенными для моделирования и оптимизации энергообеспечения;
  • для повышения эффективности обработки текущих данных и интеграции их интеграции различные дополнительные программные продукты.

Особенности учета электрической энергии

Все возникающие при потреблении электроэнергии взаимоотношения, складывающиеся между непосредственными потребителями и энергогенерирующими предприятиями, регулируется на основании Гражданского кодекса РФ, а именно согласно 6-го параграфа 30-й главы.

Этот нормативно правовой акт рассматривает следующие аспекты взаимоотношений:

  • договорные отношения;
  • качество и количество, поставляемой энергии;
  • ответственность между сторонами за содержание приборов учета и их эксплуатацию;
  • условия оплаты и другие правила.

Существуют два вида учета электрической энергии:

  • коммерческий, для расчётов за потребленные киловатт-часы;
  • технический, для контроля внутреннего потребления.

Основным документом, которым ранее регулировали взаимоотношения потребителей и энергоснабжающих организаций были правила пользования, которые датировались 06.12. 1981 годом, но они были отменны с 01.01.2000 года и признаны недействительными. Хотя вполне могут еще использоваться в качестве так называемых «обычаев делового оборота» в деловой переписке энергетических компаний и при рассмотрении споров в судах различных инстанций.

Организация учета

Все абоненты электрических сетей должны установить коммерческие приборы по учету потребления электроэнергии. Все затраты по их приобретению и монтажу осуществляются за счет средств самих абонентов, в том числе содержание и их дальнейшая эксплуатация также является ответственностью потребителя.

Установка, тип и условия эксплуатации приборов учета электроэнергии определяются, согласно, технического проекта на электроснабжение, выполненного в строгом соответствии с действующей нормативно-технической документацией в обязательном порядке, включающей ПУЭ, ПТЭ, ПТБ и ГОСТы.

По типу подключения существуют два вида приборов учета электроэнергии, а именно:

  • счетчики, предназначенные для прямого включения, их подключают непосредственно в силовую цепь;
  • счетчики, подключаемые с помощью различных дополнительных приборов или измерительных трансформаторов тока и напряжения.

В зависимости от типа устройства электрических сетей переменного электрического тока устанавливаются либо однофазные приборы учета, либо трехфазные счетчики электрической энергии.

По внутреннему устройству, а также по способам преобразования измерений и хранения поступающих данных приборы учета переменного электрического тока выпускаются двух основных видов: индукционного с механическим счетчиком и статического с электронными компонентами.

Так, электронные приборы учета электроэнергии, в отличие от индукционных являются более современными и способны обрабатывать и запоминать показания количества потребленной электрической энергии в том числе и по дифференцированной схеме в нескольких тарифных зонах, а также за разные заранее запрограммированные периоды времени. Это достигается за счёт применения электронных компонентов в схеме прибора.

Основным условием включение приборов учета электроэнергии в автоматизированную систему является наличие сетевого обмена информацией компьютерных интерфейсов в виде цифровых шин данных типа RS-232L и RS-485. Наличие этих интерфейсов позволяет интегрировать электронные счетчики в автоматизированные системы коммерческого учета энергоресурсов, с минимальными затратами.

Автоматизация системы учета

Для осуществления сбора, обработки, документирования и хранения данных о коммерческом потреблении электроэнергии на предприятиях и современных многоквартирных домах применяют различные автоматизированные системы по коммерческому учету энергоресурсов, которые принято называть по сокращенному варианту, как АСКУЭ.

Основная цель использования АСКУЭ предполагает достижение экономии и минимизация потерь электроэнергии, снижения затрат на сбор информации и оптимизации обработки данных. Главным условием, при котором становиться возможным эффективное функционирование современной энергосистемы является использование геоинформационной системы учета электроэнергии начиная от приборов, учитывающих генерацию у производителя на электростанциях и заканчивая подключением коммерческих учетов у каждого конечного потребителя.

Обязательным условием функционирования АСКУЭ является обеспечение контроля и учета:

  • поступающей и отпущенной электроэнергии;
  • активной и реактивной части электроэнергии для каждой точки в отдельности, где установлены приборы;
  • количества общих потерь электроэнергии;
  • баланса поступающей и отпущенной электроэнергии.

Автоматизированную систему коммерческого учета электроэнергии проектируют, руководствуясь, как правило, трёхуровневым принципом построения, а именно:

  1. На самом нижнем уровне выполняются основные измерения. Он состоит из измерительных трансформаторов тока, напряжения и непосредственно приборов учета.
  2. На среднем уровне осуществляется сбор и передача собранной информации от каждого объекта в отдельности или обособленной группы приборов.
  3. На третьем уровне производиться сбор и хранение полученной и переданной информации. Он представляет собой вычислительный комплекс с информационным интерфейсом.

Основными условиями, из всего объема обязательных требований, которые предъявляются к верхнему уровню, является возможность хранения оперативных данных по установленным интервалам времени и отчетным периодам. Они соответственно должны давать возможность просматривать значения приборов за промежутки времени от трех минут и получаса до суточных и месячных показаний, а также позволяли проводить анализ и составлять квартальные и годовые отчеты.

Автоматизация учета тепловой энергии

Автоматизированные системы учета тепловой энергии (АСУТЭ) также строиться по как их аналогичному многоуровневую принципу, что позволяет собирать и передавать информацию в реальном времени для выполнения функций коммерческого учета и оперативного контроля за потреблением как на уровне простых абонентов, так и включать отдельные предприятия или районные тепловые пункты. Количественный состав уровней определяется, прежде всего, техническим заданием еще на стадии основного проектирования, но также во многом может зависеть как от числа и вида существующих конечных абонентов, так и будущих потребителей.

Схема построения систем автоматизированного учета различных видов тепловой энергии должна обязательно включать:

  1. Первичный уровень, на котором осуществляется сбор данных расходов основных теплоносителей, температуре, давлению с дальнейшей их обработкой и передачей.
  2. Второй уровень, представляющий собой контроллеры, выполняющие функции по сбору и цифровой обработке в заданном алгоритме первичной информации в цифровые данные с дальнейшей передачей их на головной сервер.
  3. Третий уровень, предназначенный для автоматического объедения собранных и переданных данных с первичных вычислителей. Головной сервер отвечает также за сохранность всех полученных параметров энергоносителей от каждого абонентского узла учета, производя их архивирование и занесение в базы для дальнейшего использования информации.

Автоматизация систем учета теплоэнергии предусматривает работу на стандартизированных видах связи и передаче информационных данных, в том числе как проводной Ethernet, так и радиочастотные каналы или модули GSM.

Основными функциями автоматизированных систем по учету тепловой энергии являются:

  • автоматизация получения информации по первичным приборам расхода основных теплоносителей, их температурных параметров и показаниям давлений как на подающих, так и обратных трубопроводах тепловых сетей, на трубопроводах горячего водоснабжения и трубопроводах подпитки холодной водой;
  • автоматизация сбора цифровых данных, поступающих с контроллеров, установленных у потребителей в режиме реального времени;
  • получение, обработка и сохранение всех данных по расходам, температурным параметрам и значению давления для каждого абонента в отдельности, осуществление статистического анализа поступившей информации;
  • постоянный контроль за состоянием измерительных приборов;
  • осуществление дистанционной автоматической диагностики как технического состояния трубопроводов, так и отдельных узлов;
  • аварийное оповещение в случае несанкционированного вмешательства в работу измерительных приборов;
  • возможность формирования отчетов различных уровней;
  • длительную сохранность всех поступивших данных с измерительных приборов;
  • формирование базы данных, которые можно использовать в дальнейшем для оперативного контроля в диспетчерских пунктах или дальнейшей передачи в планово-экономические подразделения для проведения расчетов нормативов по использованию тепловой энергии.

Структурное построение учета газа

Автоматизацию систем по учету использования природного газа (АСУКГ) строят практически на тех же принципах в виде многофункционального информационного комплекса с возможностями расширения базы и внедрения многоуровневого построения. Количественный состав уровней и архитектурная схема их построения закладывается еще на стадиях проектирования и определяется техническим заданием, местными особенностями и числом объектов.

В стандартную схему обычно включают несколько уровней:

  1. На нижнем – располагают измерительное оборудование с датчиками, преобразователями сигналов и расходомерами. Здесь производиться первичный сбор необходимых данных и основной информации.
  2. На следующем – располагаются объекты управления с узлами учета расхода природного газа на газораспределительных станциях. Это позволяет выполнять задачи по сбору данных, непосредственно, с измерительных приборов, включая расход, температуру и давление в контрольном газопроводе. Вся полученная информация обрабатывается, учитывая, в том числе, компонентный состав природного газа, что позволяет производить все необходимые технические расчеты по заранее заложенным алгоритмам.
  3. На верхнем – производиться сбор и обработка всей поступившей информации с отдельных объектов, что позволяет обеспечивать работу системы автоматизации учета и контроля, как основного элемента пульта управления диспетчерской службы. Это дает возможность по подготовке баз данных для их дальнейшего использования в управлении газораспределительной системой в целом.

АСУКГ, в обязательном порядке, из-за удаленности и разобщённости точек учета должна использовать для возможности передачи данных информационные каналы связи, построенные на Ethernet, PLC, радиочастотах в 433 МГц или 2,4 ГГц или модулей GSM.

В заключение

Рассмотрев практически все аспекты построения автоматизированных систем учета и контроля энергоресурсов как в целом, так и по отдельным отраслям и видам, а также определив основные цели и задачи можно предположить, что экономическая эффективность будет завесить не только от методов внедрения и объемов финансирования, но и от специфических условий, сложившихся на каждом конкретном предприятии. А также можно однозначно констатировать, что чем выше степень энергоёмкости производства, тем более существенным будет экономический эффект от автоматизации контроля и учета основных энергоресурсов.

Система учета энергоресурсов

Одна из главных причин тревог, касающихся сферы ЖКХ – неконтролируемый рост тарифов. Система учета энергоресурсов АИСТ предназначена для автоматического сбора данных о потреблении воды, газа, тепла, электроэнергии на объектах ЖКХ и просмотра данных через WEB-интерфейс посредством стандартного WEB-браузера или мобильных приложений. Все показания в системе собираются и обрабатываются в автоматическом режиме, за счет чего исключается возможность воздействия человеческого фактора и сопряженных с ним ошибок.
Данные собираются счетчиками учета энергоресурсов и отправляются к единому концентратору КД-1000, где реализуется их централизованная обработка и хранение. Процесс передачи реализуется при помощи сетей PLC-mesh и RF-mesh. Выгрузка данных предоставляется в виде отчетов различной формы.

Автоматизированная система учета энергоресурсов представляет собой открытую систему, в рамках которой осуществляется сбор и обработка информации об энергопотреблении учреждения или предприятия. Ее внедрение дает несколько преимуществ:

  • быстрая окупаемость, даже при задействовании самой дорогой системы;
  • экономия энергетических ресурсов;
  • создание отчетов о потребление энергии в доступной форме;
  • выявление главных источников потерь и их устранение;
  • повышение точности планирования энергозатрат на будущие периоды с учетом того, сколько ресурсов затрачивается на данный момент;
  • создание “прозрачной” системы, на базе которой будет происходить управление энергоресурсами.

Процесс внедрения данной системы происходит довольно просто и не требует задействования большого числа специалистов. Дополнительно учитываются пожелания заказчика насчет точности получаемой информации, которая позже заменяется в доступный для понимания отчет. Все эти нюансы подстраиваются под каждое предприятие отдельно.

Экономия

СИСТЕМА «АИСТ» РЕШАЕТ
СЛЕДУЮЩИЕ ПРОБЛЕМЫ
УПРАВЛЯЮЩИХ КОМПАНИЙ:

ЭКОНОМИЧЕСКИЕ ВЫГОДЫ
СИСТЕМЫ «АИСТ»:

  • Слабый контроль за расходом ресурсов
  • Списывания всех потерь на ОДН
  • Частые аварии
  • Невозможность снять показания со счетчиков,
    если в квартире никого нет
  • Мошенничество со стороны жильцов

  • Снижаются затраты на персонал
  • Исключается возможность хищения энергоресурсов
    за счет межмашинного обмена данными
  • Планируются точные объемы энергопотребления
  • Становится возможной разработка более гибких
    тарифных планов

Создание отчетов о потребление энергии

Автоматизированная система учета энергоресурсов «АИСТ»

Нижний уровень Системы учета энергоресурсов АИСТ составляют счетчики энергоресурсов. Сбор данных ведется со всех типов счетчиков: электричества, воды, газа и тепла и осуществляется в автоматическом режиме.

Основным преимуществом счетчиков электроэнергии АИСТ является то, что в счетчик может быть дополнительно установлен блок ввода-передачи данных. При этом компания ООО АйСиБиКом разработала большую линейку коммуникационных модулей, которые позволяют передавать данные со счетчиков по различным каналам связи.

Программный комплекс Система учета энергоресурсов АИСТ представляет собой Web-сервис конечного пользователя, доступный через стандартный Web -браузер.

Для входа в Веб-сервис необходимо пройти процедуру регистрации и ввести логин и пароль. Веб-сервис отображает список объектов с параметрами.

Веб-сервис позволяет осуществлять различные действия с объектами (создание, редактирование, удаление). Древовидный просмотр иерархии объектов (два уровня) + одновременное отображение на карте.

Веб-сервис позволяет работать с Точками учета. Базовым примером точки учета является квартира абонента.

Программный комплекс позволяет стоить отчеты и графики по точкам учета, объектам, жилищным комплексам/микрорайонам, ресурсам за заданный интервал времени с возможностью выгрузки результатов в CSV, XLS или XLSX, PDF или в виде изображения с возможностью задания шага измерения (час или день).

АИИС УЭ ГУП НАО «Нарьян-Марская электростанция»

Согласно определения, данного в законе «Об энергосбережении и о повышении энергетической эффективности», энергосбережение - реализация организационных, правовых, технических, технологических, экономических и иных мер, направленных на уменьшение объема используемых энергетических ресурсов, при сохранении соответствующего полезного эффекта от их использования. Иными словами, энергосбережение - это процесс снижения потерь электрической и тепловой энергии.

Значительную часть потерь электрической энергии составляют технические потери. Это технологический расход электроэнергии при ее передаче от генерирующего оборудования потребителю. Технические потери являются неизбежными, однако их сокращение достигается за счет оптимизации режимов работы оборудования, реализации мероприятий по компенсации реактивной мощности, своевременного обслуживания и замены выработавшего свой ресурс оборудования.

Еще одна составляющая потерь - так называемый недоучет. Любые приборы учета имеют собственную погрешность - как случайную, так и систематическую. Случайная погрешность может работать как в «плюс», так и в «минус». Систематическая погрешность фактически является недоучетом энергоресурсов. Использование счетчиков, трансформаторов тока и напряжения низкого класса точности, неправильный выбор коэффициентов трансформации трансформаторов тока, превышение номинальной нагрузки трансформаторов напряжения определяют систематическую составляющую погрешности.

По статистическим данным, в Единой энергосистеме России, суммарная систематическая погрешность приборов учета по классам напряжения составляет чуть более одного процента от общего отпуска в сеть. То есть один процент всей выработанной электроэнергии используется бесплатно. По результатам года этот процент составляет значительную для энергосистемы сумму.

Кроме этого, в структуре потерь есть так называемые коммерческие потери. Это прежде всего хищение электроэнергии потребителями. Данное явление наиболее характерно для бытового и мелкомоторного сектора. В России коммерческие потери составляют до 30% всей потребленной электроэнергии. Контролировать величину технических потерь, бороться с коммерческими потерями и снижать недоучет можно только развивая систему коммерческого и технического учета электроэнергии. Модернизация систем учета должна проходить с использованием самых современных измерительных и информационных технологий.


Автоматизированные информационно-измерительные системы учета электроэнергии широко применяются в России уже более 10 лет и зарекомендовали себя, как надежный инструмент оценки всех мероприятий по повышению энергоэффективности, обеспечивая при этом возврат инвестиций в создание системы от 1 до 10 месяцев (в отдельных случаях).

Основной вид деятельности ГУП НАО «Нарьян-Марская электростанция» – производство электрической энергии. «Нарьян-Марская электростанция» – самый мощный генерирующий объект, расположенный на территории муниципальных образований округа. В связи с этим эффективность внедрения системы учета электроэнергии, тепловой энергии и топлива на указанной электростанции будет максимальной.

На электростанции должен быть организован учет всех используемых видов топлива, учет вырабатываемой электрической и тепловой энергии. Все системы учета должны быть интегрированы в единую АИИС УЭ, позволяющую осуществлять мониторинг потребления топлива и выработки электрической и тепловой энергии в реальном масштабе времени.

При создании систем учета должен быть использован комплексный подход. Недопустимо устанавливать дорогостоящее измерительное оборудование в электроустановках подлежащих замене или капитальному ремонту. При проведении мероприятий по автоматизации сбора и обработки данных непременно должна проводиться работа по обеспечению требуемой точности измерений.

Архитектура системы
Практика применения информационных систем учета энергоресурсов доказала эффективность использования трехуровневой структуры.

Первый уровень составляет распределенная система сбора данных. Специализированные контроллеры собирают данные с приборов учета энергоресурсов, осуществляют преобразование и сохраняют консолидированную информацию в транзакционную базу данных.

Второй уровень - система хранения данных состоит из базы данных учета энергоресурсов и системы управления базами данных (СУБД). Третий уровень – система предоставления информации пользователям системы. Уровень может быть выполнен по технологии клиент–сервер с использованием технологии «толстого клиента». В этом случае вся бизнес-логика выполняется на стороне клиента – т.е. автоматизированного рабочего места пользователя. Система предоставления информации пользователям может быть построена также и в форме web-службы,
когда пользователи подключаются к серверу при помощи «тонких клиентов» (например, интернет-браузера).


Вся обработка информации в этом случае осуществляется на стороне сервера, что существенно разгружает ПК пользователя, позволяет централизованно обслуживать АИИС, однако требует большей квалификации обслуживающего персонала.

Автоматизированная информационно-измерительная система учета энергоресурсов
ГУП НАО «Нарьян-Марская электростанция».

Внедрение системы коммерческого учета позволяет снизить затраты на энергоресурсы за счёт:
точности расчетов с энергоснабжающими организациями и субабонентами;

повышения оперативности обнаружения и устранения отклонений от установленных режимов генерации и потребления;

планирования режимов и оптимизации графиков генерации и потребления.

снизить объём собственного энергопотребления за счёт:
повышения оперативности управления энергопотреблением;
централизованного контроля потребления энергоресурсов;
контроля собственного потребления энергоресурсов структурными подразделениями электростанции;


персонализированного контроля соблюдения технологической дисциплины и оптимизации режимов работы оборудования;

повышения оперативности выявления непроизводственных потерь энергоресурсов в форме утечек и аварийных режимов работы оборудования;

внедрение АИИС УЭ позволит разработать систему нормирования потребления и выработки электрической и тепловой энергии.

В целом, АИИС учета энергоресурсов должна стать инструментом объективного контроля реализации проводимых мероприятий и программ энергосбережения.

АИИС УЭ не должна оставаться изолированной и должна обеспечивать доступ других информационных систем к консолидированной учетной информации.

Интеграция системы учета энергоресурсов с системой диспетчерского управления позволит реализовать систему выдачи рекомендаций диспетчеру для выбора наиболее эффективного режима.

Интеграция системы учета энергоресурсов с системой управления предприятием позволит напрямую формировать отчетность о ключевых показателях производительности (KPI), производственную и бухгалтерскую отчетность исходя из объективной информации, сформированной автоматизированным комплексом.

На уровне системы управления предприятием рекомендуется создание систем многомерного анализа данных с использованием OLAP-технологий.

Использование систем анализа данных позволит определять самый экономически эффективный режим работы. А использование функций интеллектуального анализа данных (Data mining) позволит предсказывать поведение системы и на основе этой информации формировать рекомендации начальнику смены электростанции для обеспечения максимальной эффективности использования топливных ресурсов и оптимальной загрузки оборудования.

Именно автоматизированная информационно измерительная система учета энергоресурсов станет инструментом для оценки всех мероприятий по энергосбережению и обеспечению энергоэффективности объектов электроэнергетики. В связи с этим, мероприятия по ее созданию необходимо начинать проводить так скоро, как только это возможно (согласно требованиям федерального закона №261-ФЗ). Планы создания АИИС учета энергоресурсов необходимо увязывать с планами реконструкции распределительных устройств станции.


Кроме этого необходимо принимать во внимание планы создания других информационных систем электростанции для снижения издержек на создание сетевой и серверной инфраструктуры.

2.2 Автоматизированные системы учета и мониторинга выработки электроэнергии и потребления топлива дизель-генераторных электростанций

Эффективная система учета и мониторинга выработки электроэнергии и потребления топлива дизель-генераторных электростанций позволит:
Снизить потери от нецелевого использования дизельного топлива.
Оперативно отслеживать характеристики дизель-генераторных установок.
Повысить точность прогнозирования потребления энергетических ресурсов сельскими поселениями НАО.
Автоматически сводить топливный и энергетический баланс НАО.
Своевременно диагностировать работу ДГУ и планировать их ремонты.
Оптимизировать объем завозимого топлива в период летней навигации.
На основании данных полученных системой может быть принято обоснованное решение о замене или модернизации дизель-генератора.

В ходе реализации программы по внедрению системы учета и мониторинга должны быть решены вопросы:
Выбор типов измерительных приборов.
Организация сбора данных со счетчиков и расходомеров дизельного топлива на уровне ДЭС.
Организация системы передачи данных с уровня ДЭС в центр сбора и обработки данных.

Автоматизированная система учета и мониторинга выработки электроэнергии и расхода дизельного топлива должна представлять собой трехуровневую систему.

Первый уровень составляют счетчики электрической энергии и расходомеры дизельного топлива. Приборы учета и мониторинга в автоматическом режиме осуществляют измерение расхода электроэнергии и топлива, формируют архив значений и предоставляют цифровой интерфейс к результатам измерений. При необходимости эксплуатационный персонал может получить информацию с ЖКИ индикаторов приборов.


Структурная схема системы мониторинга и учета электрической энергии и дизельного топлива.

Второй уровень представляет собой устройство сбора и передачи данных (УСПД) конструктивно выполненное в виде PC-совместимого промышленного контроллера. УСПД собирает результаты измерений с расходомеров и счетчиков электрической энергии по цифровым интерфейсам, осуществляет обработку результатов измерений в соответствии с параметрированием промышленного контроллера, а так же предоставляет цифровой интерфейс к собранной информации.

Верхний (третий) уровень состоит из информационно-вычислительного комплекса (ИВК), который обеспечивает автоматизированный сбор и хранение результатов измерений, осуществляет диагностику состояния средств и объектов учета и мониторинга, а так же обеспечивает доступ к учетной информации эксплуатационного персонала.

ИВК, состоящий из коммуникационного сервера обеспечивает сбор данных с распределенной системы учета и мониторинга и передачу их на серверы базы данных. Для предоставления доступа к данным через сеть интернет в ИВК должен быть включен один или несколько web-серверов.

Программное обеспечение ИВК может включать:

Программное обеспечение систем управления базами данных (СУБД), которое должно обеспечивать формирование баз данных, управление файлами и их поиск. ПО должно иметь средства поддержки приложений, обеспечивающие ввод и поддержание целостности данных, а также формирование отчетов и должно преимущественно строиться с использованием технологии клиент-сервер либо сервис ориентированных технологий.

Программное обеспечение, реализующее задачи и функции АИИС (прикладное ПО), в соответствии с требованиями технического задания.

Программное обеспечение, отвечающее за полноту и достоверность информации в АИИС учета и мониторинга (ПО достоверизации), определяющее сроки обновления и хранения данных.

Программное обеспечение, отвечающее за поддержание системы единого времени в составе АИИС.

Одним из основных требований к программному обеспечению ИВК является открытость и возможность интеграции с другими информационными системами Ненецкого автономного округа.

Автоматизированная система учета и мониторинга электрической энергии и расхода дизельного топлива должна включать две подсистемы:
подсистему учета и мониторинга производства электрической энергии;
подсистему учета и мониторинга расхода дизельного топлива.


Расходомеры
Основным элементом подсистемы учета и мониторинга расхода дизельного топлива является расходомер. Он должен функционировать как в составе автоматизированной системы, так и автономно.

При выборе типа измерительного прибора необходимо учитывать, что многие расходомеры, представленные на рынке, в силу своих конструктивных особенностей, понижают давление в топливном тракте и в случае низкого качества топлива, либо экстремальных климатических условий, могут быть причиной аварии ДГУ. В связи с этим, предпочтительна установка современных ультразвуковых и электромагнитных расходомеров, которые не создают дополнительных потерь давления топлива.

Следует отметить, что существуют механические расходомеры создают минимальные потери давления, благодаря конструктивным особенностям, однако срок службы таких устройств составляет не более 10-15лет.

Также, необходимо внимательно подойти к определению места установки дизельного расходомера. Для предотвращения нецелевого использования топлива расходомер, как правило, должен быть установлен на каждом агрегате между расходным баком дизель-генератора и топливным фильтром. При этом, место установки каждого расходомера должно быть определено индивидуально, в соответствии с требованиями к монтажу, которые разработаны производителем прибора учета расхода дизельного топлива.

В топливной магистрали, ведущей из резервуарного парка к дизель-генератору, прибор учета следует размещать лишь при отсутствии возможности установки его после расходного бака, либо при отсутствии самого расходного бака.

Выбор типа расходомера связан с типом устройства сбора данных. Предпочтителен вариант, когда расходомер формирует профиль расход топлива, хранит его в своей энергонезависимой памяти и предоставляет цифровой интерфейс к этим данным. В этом случае исключены ошибки учета, вызванные человеческим фактором, и появляется возможность составления энергетического баланса ДЭС на суточном интервале, что существенно повышает наблюдаемость объекта.

Вне зависимости от типа, расходомер должен обеспечивать точность измерения не хуже 1%, среднюю наработку на отказ не менее 35000часов, при общем сроке службы не менее 20лет в условиях эксплуатации. Динамический диапазон - отношение максимального измеряемого расхода к минимальному значению измеряемого расхода - не должен быть менее чем 1:25. Диапазон допустимых температур должен быть не хуже от минус 300С до плюс 500С.


Счетчики электрической энергии

Счетчик электрической энергии является базовым элементов подсистемы учета и мониторинга электроэнергии.

При выборе типа электрического счетчика следует отдавать предпочтение отечественным многофункциональным цифровым приборам, имеющим положительный опыт эксплуатации в России. Примеры таких электросчетчиков приведены в приложении П1.

Одна из основных характеристик счетчика - класс точности – должен быть не хуже 0,5S. Для обеспечения непрерывности учета и мониторинга, прибор учета должен иметь возможность подключения резервного источника питания и автоматического переключения на источник резервного питания при исчезновении основного питания и наоборот. Также необходимым условием является наличие энергонезависимой памяти для хранения:
профиля нагрузки с получасовым интервалом на глубину не менее 35 суток;
данных по активной и реактивной электроэнергии с нарастающим итогом за прошедший месяц;
запрограммированных параметров.

Коммуникационные возможности счетчика электрической энергии должны обеспечивать подключение по одному или нескольким цифровым интерфейсам компонентов АИИС, в том числе для автономного считывания, удалѐнного доступа и параметрирования.

Системное время счетчика должно вестись с точностью не хуже 5с/сутки с возможностью внешней автоматической коррекции (синхронизации).

Все устройства, входящие в автоматизированную систему должны быть диагностируемы и следовательно наличие в устройствах «Журнала событий», фиксирующего время и даты наступления событий является обязательным.

Счетчик должен обеспечивать защиту от несанкционированного изменения параметров, а также от записи, при этом защита должна быть обеспечена на программном (логическом) уровне (установка паролей) и аппаратном (физическом) уровне.

В условиях НАО особенно важно, чтобы счетчики обеспечивали работоспособность в диапазоне температур от минус 40˚С до плюс 60˚С.

Средняя наработка на отказ счетчика должна составлять не менее 35000 часов при сроке службы не менее 20 лет.

Счетчик электрической энергии должен быть внесен в государственный реестр средств измерений РФ. Межповерочный интервал счетчика должен быть не менее 8 лет.


УСПД

На уровне ДЭС УСПД выполняет объединяющую функцию для всех подсистем. УСПД должно быть выполнено в виде промышленного контроллера.

Контроллер работает в автоматическом режиме и обеспечивает сбор результатов измерений от счѐтчиков по цифровым интерфейсам, обработку результатов измерений в соответствии с параметрированием промышленного контроллера, предоставляет интерфейс доступа к собранной информации, синхронизирует системное время приборов учета электроэнергии и дизельного топлива.

Программное обеспечение УСПД должно поддерживать необходимые протоколы, а само УСПД совместимо по интерфейсу, как с выбранными расходомерами, так и со счетчиками электроэнергии. Использование отдельного устройства сбора и передачи данных для каждой подсистемы существенно повышает стоимость самой системы и существенно усложняет обслуживание автоматизированной системы.

В связи с малой доступностью большинства сельских поселений НАО диагностируемость оборудования АИИС чрезвычайно важна. В промышленном контроллере должно быть обеспечено автоматическое ведение «Журнала событий», в котором фиксируются время и даты наступления событий, а также попытки несанкционированного доступа связи с промышленным контроллером, приведшие к каким-либо изменениям данных, перезапуски промышленного контроллера (при пропадании напряжения, зацикливании и т.п.), изменение текущих значений времени и даты при синхронизации времени, отключение питания. Все события, фиксируемые в журнале приборов учета и промышленного контроллера, должны передаваться в центр сбора данных.

Самодиагностика устройства сбора и передачи данных должна записываться в журнал событий или выводиться на экран УСПД. Глубина хранения данных на промышленном контроллере не должна быть меньше 35 суток.

Промышленный контроллер должен иметь встроенные энергонезависимые часы, обеспечивающие ведение даты и времени. Рекомендуемая точность хода часов должна быть не хуже 5.0 с/сутки.
Необходимо использовать УСПД, либо выполненный в едином корпусе, обеспечивающем возможность одностороннего обслуживания и степень защиты не ниже IP51 (в соответствии с ГОСТ 14254) или установленный в специализированных шкафах, имеющих степень защиты не менее IP51.


Конструкция промышленного контроллера должна позволять его размещение как на стандартных панелях, так и в специализированных шкафах (при использовании внешних модемов). Промышленный контроллер должен функционировать автоматически (без вмешательства эксплуатационного персонала) и иметь подтвержденную наработку на отказ не менее 35000 часов. Срок службы промышленного контроллера должен составлять не менее 20 лет.

Напряжение питания промышленного контроллера от сети постоянного тока должно составлять 24В с допустимым отклонением напряжения в пределах +/- 20%. Промышленный контроллер должен иметь резервный источник питания и обеспечивать автоматическое переключение на резервный источник питания при исчезновении основного питания и обратно. Промышленный контроллер должен обеспечивать работоспособность в диапазоне температур, в соответствии с условиями эксплуатации.

В целях оптимизации стоимости измерительного оборудования может быть выбран вариант, когда с расходомера унифицированный сигнал 4-20мА заводится непосредственно в контроллер УСПД. В этом случае необходимо учитывать, что измерительный канал заканчивается на УСПД и контроллер должен быть сертифицирован как средство измерения и внесен в государственный реестр средств измерений.

Вопросы питания измерительных приборов и коммуникационного оборудования

В ходе разработки и реализации проектов по внедрению автоматизированной системы учета и мониторинга особое внимание должно быть уделено вопросам электропитания основных элементов системы. Организация резервированного питания позволит обеспечить непрерывное
функционирование всех элементов, обеспечит непрерывный учет дизельного топлива и электроэнергии, постоянный мониторинг ДЭС из центра сбора данных.

Счетчики электроэнергии должны иметь дополнительный ввод внешнего питания для передачи информации по цифровому интерфейсу в случае отсутствия измерительного напряжения. Производители расходомеров снабжают приборы учета внутренним источником питания, позволяющим устройству выполнять учетные функции и оставаться на связи до 30 дней, при отсутствии внешнего питания.

Нарушения качества электрической энергии могут приводить к выходу из строя элементов автоматизированной системы, в связи с этим, должны быть приняты меры по повышению качества электрической энергии питания приборов учета и средств автоматизации.

Система заземления ДЭС должна отвечать требованиям ПУЭ. Создание отдельного контура заземления для системы автоматизации и связи должно быть обосновано в проектной документации.


Организация каналов связи для системы сбора данных

Для удаленных и малодоступных районов НАО предпочтительно организовывать спутниковый канал связи между ИВКЭ и ИВК. Стоимость комплекта двунаправленной спутниковой связи находится в пределах от 80 до 150 тысяч рублей за одну точку. Абонентская плата за использование спутникового канала связи пропускной способностью 512кбит/сек составляет от 500 до 3000 рублей в зависимости от объема передаваемой информации. Организованный канал может использоваться не только для передачи данных АИИС, но и для организации канала голосовой связи. При этом обеспечивается возможность развития систем автоматизации, создания подсистемы учета и мониторинга тепловой энергии, подключения метеорологического оборудования. Недостатком спутниковых систем передачи данных является зависимость качества связи от погодных условий.

В районах присутствия операторов мобильной связи экономически целесообразным является создание систем передачи данных на базе GSM/GPRS/3G каналов.

Нежелательно организовывать сбор учетный данных через передачу по телефону, радиосвязи или передачу показаний приборов учета с нарочным. Такой способ увеличивает риск злоупотреблений и не исключает ошибки при снятии показаний и передаче их оператору центра сбора и обработки данных системы учета и мониторинга электрической энергии и дизельного топлива.

Внедрение системы учета необходимо производить в несколько этапов с выделением пусковых комплексов. Для оценки эффективности системы учета необходимо реализовать 2-3 «пилотных» проекта в относительно легкодоступных населенных пунктах.

В первую очередь автоматизированными системами учета и мониторинга электрической энергии и дизельного топлива следует оснастить наиболее крупные дизельные электрические станции в населенных пунктах с наибольшей численностью населения.

Во вторую очередь следует оснащать ДЭС с наибольшим расходом топлива на выработку одного кВт*ч. электроэнергии, для обнаружения коммерческих потерь дизельного топлива и борьбы с ними. Далее такими системами должны быть оборудованы все остальные электростанции Ненецкого автономного округа.

2.3 АИИС учета электроэнергии объектов ЖКХ г.Нарьян-Мар

Разработка подпрограммы по установке автоматизированной информационно-измерительной системы учета электроэнергии объектов ЖКХ г.Нарьян-Мар должна выполняться по поручению Правительства Ненецкого автономного округа. В ходе реализации необходимо создание общедомовых узлов учета электрической энергии, а также оборудование узлов учета современными приборами.

Реализация подпрограммы позволит:

1. Повысить надежность снабжения электрической энергией социально значимых объектов городской инфраструктуры, а так же населения г.Нарьян-Мар.

2. Снизить потери электроэнергии в городской электрической сети.

3. Провести определение и выравнивание общего баланса использования электрической энергии и мощности, что позволит более обоснованно подойти к формированию тарифа на передачу и использование электроэнергии.

4. Повысить заинтересованность управляющих компаний в более эффективной эксплуатации и ремонте внутридомовых электрических сетей.

5. Повысить оперативность управления электроснабжением объектов ЖКХ.

6. Вести адресную борьбу с коммерческими потерями электроэнергии.

7. Разработать наиболее эффективные дифференцированные тарифы для населения и промышленных предприятий.

В качестве приборов учета необходимо использовать цифровые многофункциональные счетчики отечественного производства. Рекомендуемые типы приборов учета представлены в приложении П1.
Счетчики рекомендуется размещать в отдельных шкафах учета. При этом
система обогрева шкафа должна обеспечивать функционирование узла учета при
любой температуре наружного воздуха. Все шкафы учета должны оборудоваться
системой удаленного сбора данных, позволяющей получать информацию с
электросчетчиков через сеть GSM/GPRS/3G.

Очередность установки узлов учета электрической энергии должна быть определена и согласована в ходе реализации проекта, исходя из следующих критериев:
1. Жилые дома с наибольшими объемами потребления.
2. Жилые дома с низкой обеспеченностью индивидуальными приборами учета.
3. Остальные жилые дома.

В ходе реализации проекта современными пунктами учета должны быть оборудованы все многоквартирные жилые дома г.Нарьян-Мар.

В бытовом секторе существенную роль в структуре потерь электроэнергии играют коммерческие потери. Наиболее эффективное мероприятие по снижению коммерческих потерь электроэнергии - обновление парка приборов учета у бытовых потребителей. Должна быть поставлена цель полностью обновить парк приборов в ближайшие 2-3года. АИИС учета электроэнергии, в первую очередь, должна внедряется в тех местах, где наиболее вероятна возможность несанкционированного потребления. Современные технологии передачи данных позволяют осуществлять беспроводной сбор данных о потреблении электроэнергии со счетчиков. Причем стоимость таких решений неуклонно снижается.

Ограничиваться только техническими мероприятиями не следует. Помимо капитальных вложений в организацию узлов учета, не менее эффективны и мероприятия организационного характера, такие как:
проведение проверок и рейдов по выявлению нарушений потребления электроэнергии;
пересмотр договоров с физическими и юридическими лицами.

При борьбе с коммерческими потерями в системах электроснабжения потребителей всегда следует сопоставлять стоимость капитальных вложений и ожидаемую отдачу от принимаемых мер.

УДК XXX. XXX. XX

К. т.н., доцент, ВГАВТ1
, ВГАВТ
, к. т.н., ВГАВТ
, д. т.н., профессор, ВГАВТ
, к. т.н., ВГАВТ

Автоматизированная система учета энергоресурсов.

Краткая аннотация

Существующие системы учета потребления энергоресурсов можно разделить на 2 группы – системы коммерческого учета и системы оперативного контроля и учета [например, 1,2]. Для первой группы требуется сертификация средств измерения, в связи с чем они имеют сравнительно высокую стоимость. Системы оперативного контроля и учета предназначены для получения достоверной информации о потреблении энергоресурсов, играющей важную роль при принятии обоснованных управленческих решений руководством предприятий и учреждений.

Подобная система под названием “САКУРА” (рис.1) была разработана для одного из корпусов Горьковского технического университета по заказу Нижегородского регионального центра энергосбережения (информация о системе опубликована НИЦЭ в без ссылок на разработчиков).

Рис.1 Заставка системы САКУРА.

Система предназначена для автоматизированного сбора и учета информации о потреблении энергоресурсов (электрической и тепловой энергии , тока, температуры, воды, газа и т. п.) в промышленных и административных зданиях.

В состав системы входят диспетчерский пульт (компьютер с программным комплексом), контроллер линии связи, устройства сбора и хранения информации (УСХИ), измерительные приборы (или датчики) с интерфейсом RS-485 (рис. 2). К линии RS-485 может быть подключено до 32 устройств (УСХИ и датчиков с интерфейсом RS-485, например счетчиков электрической энергии, тепловой энергии и т. п.). В свою очередь, к УСХИ может быть подключено до 64 датчиков с токовыми и импульсными выходами. Контроллер линии связи позволяет работать со вторым диспетчерским пультом через телефонный канал связи.

Рис.2. Структура системы автоматизированного сбора и учета информации о потреблении энергоресурсов.

Функциональные возможности системы.

Функции оперативного контроля:

Контроль в режиме реального времени любого из датчиков с диспетчерского пульта или с удаленного терминала по телефонной линии;

Представление в графическом виде планов здания с размещенными датчиками и их показаний.

Функции настройки:

Добавление новых датчиков или их исключение из системы;

Привязка датчиков к поэтажным планам здания;

Конфигурация УСХИ и настройка подключенных к нему датчиков.

Функции сбора и хранения информации:

Опрос всех устройств, включенных в сеть и чтение с них статистической информации за заданный промежуток времени;

Просмотр текущих показаний датчиков в режиме мониторинга с представлением их местоположения на поэтажных планах здания;

Сохранение собранной со всех датчиков информации.

Функции анализа:

Представление информации в табличном и графическом виде по любым видам потребляемых энергоресурсов за произвольный интервал времени;

Расчет обобщенных характеристик (суммарных, удельных значений параметров и т. п.).

Функции защиты информации :

Доступ возможен только при использовании пароля (два уровня – диспетчера и администратора).

Описание устройства сбора и хранения информации.

УСХИ служит для подключения датчиков не имеющих интерфейса RS-485. Это датчики с токовым выходом (датчики температуры, датчики тока и т. п.) и датчики с импульсным выходом (Счетчики воды и т. п.). К УСХИ можно подключить до 64 (функционально разбиты на 8 модулей по 8 датчиков, количество модулей импульсных и токовых датчиков – произвольное). Диапазон частот для импульсных входов – 0-200 Гц, входные сигналы токовых датчиков - 0-20 мА или 4-20 мА. Информация с датчиков хранится в блоке УСХИ с интервалом 30 мин в течении 10 последних суток.

Конструкция УСХИ – модульная (рис.3). На материнской плате размещена плата центрального процессора и восемь слотов для подключения модулей ввода информации с датчиков. Материнская плата с помощью ленточного кабеля соединена с платами клеммных соединителей для подключения кабелей датчиков. На них размещены 64 группы (по 3 штуки – корпус, +24В, сигнальный вход) клеммных соединителей.

Модули аналогового и импульсного ввода выполнены в виде отдельных плат, вставляемых в слоты. Каждый модуль имеет 8 каналов измерения. Каждая плата обслуживается собственным процессором. Программа, зашитая во внутреннюю память процессоров, обеспечивает измерение по 8 каналам и формирование массива полученных данных для передачи в центральный процессор. Связь с центральным процессором осуществляется по внутреннему последовательному каналу на скорости ________. Любой модуль (аналогового или импульсного ввода) может размещаться в произвольном слоте. Тип модуля и его адрес модуль центрального процессора определяет автоматически, никаких изменений в аппаратной части и программе УСХИ не требуется. Размер модуля ввода – 85*50 мм.

На плате центрального процессора УСХИ размещены 2 однокристальных микроЭВМ, энергонезависимая память, часы реального времени, сторожевой таймер и интерфейсы внутреннего последовательного канала и внешнего канала RS-485.

Первая ОМЭВМ обеспечивает сбор информации с модулей ввода и формирование массива данных за последние 10 суток с тридцатиминутным интервалом. Вторая ОМЭВМ обеспечивает подключение блока к каналу RS-485.

Рис.3. Устройство сбора и хранения информации

Контроллер линии связи позволяет осуществлять соединение компьютера с каналом связи RS-485 или телефонным модемом. Через канал связи RS-485 осуществляется сбор данных с контролируемых устройств и установленных датчиков. Второй канал предназначен для осуществления связи с удаленными устройствами посредством коммутируемой телефонной связи и модема. Для реализации удаленной сети (в другом здании, районе, городе) используются два контроллера связи, при этом к одному подключаются диспетчерский пульт, телефонный модем и локальные устройства сбора информации, ко второму подключается модем и устройства сбора информации.

Описание диспетчерского пульта.

Диспетчерский пульт (рис. 4) реализован с помощью программного комплекса “САКУРА” устанавливаемого на персональном компьютере. Данный программный комплекс для работы под операционной системой Windows 98 и выше. Компьютер должен иметь свободный COM порт для подключения контроллера линии связи.

Программный комплекс (ПК САКУРА) включает в свой состав систему сбора, хранения и визуализации данных и драйверы сопряжения с подключаемыми внешними устройствами. Одной из основных характеристик комплекса является его модульная структура, позволяющая легко наращивать функциональность установленной системы (подключение датчиков и устройств других фирм-производителей).

Большое внимание при разработке ПК САКУРА уделялось обеспечению гибкости системы и легкости внесения изменений в конфигурацию без необходимости модификации программы.

Рис. 4. Диспетчерский пульт системы.

Режим отображения поэтажного плана

Программа обеспечивает отображение информации об устройствах в 2-х видах – через окно дерева устройств, и через окно поэтажного плана. Дерево устройств отображает все устройства в системе (с учетом выбранной при старте организации); при этом устройства сгруппированы по типам измеряемого ресурса. Поэтажный план отображает устройства по их физическому месту расположения. Работа в режиме отображения поэтажного плана обеспечивает большую наглядность.

Рис. 5. Окно поэтажного плана.

Основным элементом данного окна (рис. 5) являются 3 закладки с планами подвала, первого этажа и второго этажа. Переключение между ними осуществляется щелчком мышью на закладке листа .

Под планом находится информация о комнате, по которой выполнен щелчок мышью: номер (или название), принадлежность организации и количество датчиков. Далее - название и тип находящихся в комнате датчиков. Область справа отведена под значения тока и температуры от датчиков в выбранной комнате (режим фонового мониторинга).

Разные типы датчиков отображены на плане цветными значками разной формы. Легенда (условные обозначения) располагается справа от плана. Основные операции над датчиками доступны через контекстное меню (щелчок правой кнопкой мыши на значке датчика). Указание мышью на значок устройства (без нажатия) отображает имя устройства (во всплывающей подсказке). Двойной щелчок по значку датчика запускает режим мониторинга.

Большая кнопка справа вверху служит для перехода в режим просмотра дерева устройств, кнопки под легендой доступны только в режиме администратора и служат для работы с комнатами (при начальной настройке системы) и включения режима перемещения устройств на карте.

Информация о комнатах (так же как и информация о датчиках) не является жестко "зашитой" в систему; она вводится на этапе конфигурирования системы и хранится в служебной базе данных программы, обеспечивая возможность изменения конфигурации.

Добавление устройств в систему

Добавление и удаление датчиков возможно только в режиме администратора; этот уровень доступа в систему защищен паролем. После ввода пароля в режиме просмотра дерева устройств появляются кнопки "Добавить устройство" и "Удалить устройство"(рис. 6)

Рис. 7. Окно добавления устройства

После заполнения формы нажатием кнопки ОК происходит добавление устройства в систему. В случае, если устройство подключается через блок УСХИ запускается программа настройки описаная далее. В системе предусмотренна возможность привязки и отображения устройств и датчиков на поэтажном плане здания.

Анализ статистики и построение графиков

Имеется возможноть просмотра данных с датчиков за выбранный период в табличной и графической форме. При этом помечаются интересующие датчики (рис. 8).

Рис. 9. Окно выбора периода.

Далее осуществляется выбор типа отображаемой информации. В зависимости от выбранного датчика (датчиков), их типа и запрошенного периода возможны варианты (выдавать показания в натуральном или денежном выражении и т. п.) При отсутствии данных за часть периода, система автоматически считает их с устройств.

Полученные результаты отоброжаются в окне запрошенных данных в табличной форме и на графике (рис.10).

Рис. 10. Окно запрошенных данных.

Анализ статистических данных.

Анализ данных производится с помощюь модуля расчета. Модуль расчета предназначен для расширения возможностей системы по обработке данных путем обеспечения расчета производных значений на основе имеющихся при обеспечении легкости модификации расчетных формул.

Встроенный вычислитель обеспечивает следующие возможности:

· вычисления по многострочным формулам.

· поддержка 4-х арифметических действий и возведения в степень ("^"), поддержка приоритетов вычисления и скобок.

· использование до 50-ти переменных и именованных констант.

· подстановка вместо имени датчика (точнее, первого слова имени) значения соответствующего показателя за выбранный период.

· подстановка вместо переменной "t" длины выбранного периода (в часах).

Формулы доступны для изменения (считываются из файла при старте программы). При работе в режиме администратора возможен режим отладки (рис. 11).

Рис. 12. Анализ: нормативная кривая энергопотребления.

Работа с датчиками имеющими токовый или импульсный выход.

Все датчики, имеющие токовый или импульсный выход, подключаются к УСХИ при этом максимальное количество, подключаемое к одному блоку, шестьдесят четыре. Количество блоков УСХИ для подключения не ограниченно. Настройка и калибровка подключенных датчиков осуществляется программным путем. Устанавливается тип датчика – аналоговый или импульсный. Далее для импульсных датчиков (рис. 13) производится калибровка. Выбирается канал к которому подключен датчик, вводится название датчика и задается цена одного импульса, дополнительный множитель, размерность измерений и если необходимо задаются пределы ограничений.

Рис. 14. Установка и калибровка аналогового датчика.

Преобразование значения осуществляются по уравнению прямой путем ввода значений в двух точках. Дополнительно предоставляется возможность ввода ограничений значений по максимуму и минимуму и по знаку. В режиме настройки предоставляется возможность просмотра значений и констант калибровки для всех подключенных датчиков.

В режиме опроса датчика подключенного к УСХИ осуществляется автоматическая установка связи с блоком и сбор информации со всех подключенных датчиков. Получаемые значения выводятся в информационном окне о комнате на общем плане здания (рис. 15), либо возможен вывод информации для одного датчика в специальном окошке (рис. 16).

Рис. 16. Просмотр значения выбранного датчика.

Работа с приборами, имеющими последовательный порт RS-485

На момент разработки комплекса заказчик определился с двумя устройствами поддерживающими канал RS-485 – электросчетчик “Микрон 3x” (рис. 17), завод Фрунзе (Н. Новгород) и теплосчетчик (рис. 18) фирмы Danfos (Швеция?). Данные устройства собирают и хранят статистические данные за сутки и месяц и имеют свои протоколы для осуществления связи. Для этих приборов были разработаны программы драйвера, которые позволяют оперативно считывать текущею информацию, настройки приборов и снимать статистические данные. При подключении новых приборов на основе предоставляемого протокола создается новый драйвер, который позволит легко интегрировать приборы в комплекс.

Рис. 18. Окно отображения текущей информации на электросчетчике.

Драйвера для приборов реализуют две основных функции. Работа в режиме мониторинга – производится постоянный опрос прибора с целью предоставления текущих даны и настроек прибора. Информация на компьютере отображается в специальных окошках на рисунке 17 представлено окно отображения текущей информации с электросчетчика, на рисунке 18 с теплосчетчика. Вторая функция – сбор статистических данных с приборов. При этом выводится информационное окно показывающее состояние чтения статистических данных.

В настоящее время система находится в опытной эксплуатации в 8 корпусе Нижегородского политехнического университета.

, “Сакура” - система мониторинга энергопотребления бюджетной организации. // Энергоэффективность: опыт, проблемы, решения, Н. Новгород, 2001. Вып.3. С.52­–57.

1 ВГАВТ, Нижний Новгород, ул. Нестерова, 5.
E-mail: *****@

Название на английском языке

Аннотаця на англ языке (до 10 строк)e.



Похожие статьи