Методы прогнозирования. Анализ временных рядов. Анализ временных рядов и прогнозирование в Excel на примере

Скачать полный текст диссертации в формате PDF (2.9 Мб).

Глава 1. Постановка задачи и обзор моделей прогнозирования временных рядов

В текст диссертации включены вставки со ссылками на полезные записи блога, в которых я простым языком рассказываю о моделях прогнозирования и привожу примеры реализации.

Нейронные сети рассмотрены в наборе записей по тэгу .
- Модель ARIMAX подробно описана в четырех записях по тэгу .
- Описание и примеры реализации экспоненциального сглаживания приведены по тэгу .
- Опубликованы записи по вопросам .
- Полный перечень материалов о моделях прогнозирования смотри по тэгу .

Слово прогноз возникло от греческого , что означает предвидение, предсказание. Под прогнозированием понимают предсказание будущего с помощью научных методов . Процессом прогнозирования называется специальное научное исследование конкретных перспектив развития какого-либо процесса. Согласно работе процессы, перспективы которых необходимо предсказывать, чаще всего описываются временными рядами , то есть последовательностью значений некоторых величин, полученных в определенные моменты времени. Временной ряд включает в себя два обязательных элемента - отметку времени и значение показателя ряда, полученное тем или иным способом и соответствующее указанной отметке времени. Каждый временной ряд рассматривается как выборочная реализация из бесконечной популяции, генерируемой стохастическим процессом, на который оказывают влияние множество факторов . На представлен пример временного ряда цен на электроэнергию европейской территории РФ.


Рис. 1.1 Временной ряд цен на электроэнергию

Простым языком о видах временных рядов смотри запись блога Характеристики прогнозируемых временных рядов

Одна из классификаций временных рядов приведена в работе . Согласно этой работе, временные ряды различаются способом определения значения, временным шагом, памятью и стационарностью.

  • интервальные временные ряды ,
  • моментные временные ряды .

Интервальный временной ряд представляет собой последовательность, в которой уровень явления (значение временного ряда) относят к результату, накопленному или вновь произведенному за определенный интервал времени. Интервальным, например, является временной ряд показателя выпуска продукции предприятием за неделю, месяц или год; объем воды, сброшенной гидроэлектростанцией за час, день, месяц; объем электроэнергии, произведенной за час, день, месяц и другие.

Если же значение временного ряда характеризует изучаемое явление в конкретный момент времени, то совокупность таких значений образует моментный временной ряд . Примерами моментных рядов являются последовательности финансовых индексов, рыночных цен; физические показатели, такие как температура окружающего воздуха, влажность, давление, измеренные в конкретные моменты времени, и другие.

В зависимости от частоты определения значений временного ряда, они делятся на

  • равноотстоящие временные ряды ,
  • неравноотстоящие временные ряды .

Равноотстоящие временные ряды формируются при исследовании и фиксации значений процесса в следующие друг за другом равные интервалы времени. Большинство физических процессов описываются при помощи равноотстоящих временных рядов. Неравноотстоящими временными рядами называются те ряды, для которых принцип равенства интервалов фиксации значений не выполняется. К таким рядам относятся, например, все биржевые индексы в связи с тем, что их значения определяются лишь в рабочие дни недели.

В зависимости от характера описываемого процесса временные ряды разделяются на

  • временные ряды длинной памяти ,
  • временные ряды короткой памяти .

Задача отнесения временного ряда к рядам с короткой или длинной памятью описана в статье . В целом, говоря о временных рядах с длинной памятью , подразумеваются временные ряды, для которых автокорреляционная функция, введенная в книге , убывает медленно. К временным рядам с короткой памятью относят временные ряды, автокорреляционная функция которых убывает быстро. Скорость потока транспорта по дорогам, а также многие физические процессы, такие как потребление электроэнергии, температура воздуха, относятся к временным рядам с длинной памятью . К временным рядам с короткой памятью относятся, например, временные ряды биржевых индексов.

Дополнительно временные ряды принято разделять на

  • стационарные временные ряды ,
  • нестационарные временные ряды .

Стационарным временным рядом называется такой ряд, который остается в равновесии относительно постоянного среднего уровня. Остальные временные ряды являются нестационарными . В книге указано, что и в промышленности, и в торговле, и в экономике, где прогнозирование имеет важное значение, многие временные ряды являются нестационарными, то есть не имеющими естественного среднего значения. Нестационарные временные ряды для решения задачи прогнозирования часто приводятся к стационарным при помощи разностного оператора .

Горизонты прогнозирования рассмотрены также в записи блога Горизонты прогнозирования временных рядов
  • ультра: до 3 – 4 часа;
  • краткосрочное прогнозирование : до 5 – 8 часов;
  • : до 16 – 24 часов.

Для задачи прогнозирования энергопотребления классификация задач предложена в работе :

  • : до одного дня;
  • краткосрочное прогнозирование : от одного дня до недели;
  • среднесрочное прогнозирование : от одной недели до года;
  • долгосрочное прогнозирование : более чем на год вперед.

То есть для различных временных рядов , с различным временным разрешением классификация срочности задач прогнозирования индивидуальна .

Говоря о прогнозировании временных рядов, необходимо различить два взаимосвязанных понятия - метод прогнозирования и .

Метод прогнозирования представляет собой последовательность действий , которые нужно совершить для получения модели прогнозирования временного ряда.

Метод прогнозирования содержит последовательность действий, в результате выполнения которой определяется конкретного временного ряда. Кроме того, метод прогнозирования содержит действия по оценке качества прогнозных значений. Общий итеративный подход к построению модели прогнозирования состоит из следующий шагов .

Шаг 1. На первом шаге на основании предыдущего собственного или стороннего опыта выбирается общий класс моделей для прогнозирования временного ряда на заданный горизонт.

Шаг 2. Определенный общий класс моделей обширен. Для непосредственной подгонки к исходному временному ряду, развиваются грубые методы идентификации подклассов моделей. Такие методы идентификации используют качественные оценки временного ряда.

Шаг 3. После определения подкласса модели, необходимо оценить ее параметры , если модель содержит параметры, или структуру, если модель относится к категории структурных моделей (). На данном этапе обычно используется итеративные способы, когда производится оценка участка (или всего) временного ряда при различных значениях изменяемых величин. Как правило, данный шаг является наиболее трудоемким в связи с тем, что часто в расчет принимаются все доступные исторические значения временного ряда.

Шаг 4. Далее производится диагностическая проверка полученной модели прогнозирования . Чаще всего выбирается участок или несколько участков временного ряда, достаточных по длине для проверочного прогнозирования и последующей оценки точности прогноза. Выбранные для диагностики модели прогнозирования участки временного ряда называются контрольными участками (периодами).

Шаг 5. В случае если точность диагностического прогнозирования оказалась приемлемой для задач, в которых используются прогнозные значения, то модель готова к использованию . В случае если точность прогнозирования оказалось недостаточной для последующего использования прогнозных значений, то возможно итеративное повторение всех описанных выше шагов, начиная с первого.

Моделью прогнозирования временного ряда является функциональное представление, адекватно описывающее временной ряд.

При прогнозировании временных рядов возможны два варианта постановки задачи . В первом варианте для получения будущих значений исследуемого временного ряда используются доступные значения только этого ряда . Во втором варианте для получения прогнозных значений возможно использование не только фактических значений искомого ряда, но и значений набора внешних факторов, представленных в виде временных рядов . В общем случае временные ряды внешних факторов могут иметь разрешение по времени отличное от разрешения искомого временного ряда. Например, в работе подробно обсуждаются внешние факторы, оказывающие влияние на временной ряд энергопотребления. К таким внешним факторам относят температуру окружающей среды, влажность воздуха, а также сезонность, т. е. час суток, день недели, месяц года. В общем случае внешние факторы могут быть дискретными , т. е. представленными временными рядами, например, температура воздуха; или категориальными , т. е. состоящими из подмножеств, например, в зависимости от веса тела человека можно отнести к трем категориям: «легкий», «средний», «тяжелый». Лишь некоторые модели прогнозирования позволяют учитывать категориальные внешние факторы, большинство моделей позволяют учитывать только дискретных ().

При прогнозировании временного ряда , адекватно описывающую временной ряд, которая называется моделью прогнозирования . Цель создания модели прогнозирования состоит в получении такой модели, для которой среднее абсолютное отклонение истинного значения от прогнозируемого стремится к минимальному для заданного горизонта, который называется временем упреждения. После того, как модель прогнозирования временного ряда определена, требуется вычислить будущие значения временного ряда, а также их доверительный интервал.

1.2. Формальная постановка задачи

Прогнозирование без учета внешних факторов . Пусть значения временного ряда доступны в дискретные моменты времени t = 1,2,...,T . Обозначим временной ряд Z(t) = Z(1), Z(2),...,Z(T) . В момент времени T необходимо определить значения процесса Z(t) в моменты времени T+1,...,T+P . Момент времени T называется моментом прогноза, а величина P - временем упреждения .

1) Для вычисления значений временного ряда в будущие моменты времени требуется определить функциональную зависимость , отражающую связь между прошлыми и будущими значениями этого ряда


Рис. 1.2. Иллюстрация задачи прогнозирования временного ряда без учета внешних факторов

Прогнозирование с учетом внешних факторов . Пусть значения исходного временного ряда Z(t) доступны в дискретные моменты времени t = 1,2,...,T . Предполагается, что на значения Z(t) оказывает влияние набор внешних факторов. Пусть первый внешний фактор X 1 (t 1) доступен в дискретные моменты времени t 1 = 1,2,...,T 1 , второй внешний фактор X 2 (t 2) доступен в моменты времени t 2 = 1,2,...,T 2 и т.д.

В случае, если дискретность исходного временного ряда и внешних факторов, а также значения T,T 1 ,...,T S различны, то временные ряды внешних факторов X 1 (t 1) ,...,X S (t S) необходимо привести к единой шкале времени t .

В момент прогноза T необходимо определить будущие значения исходного процесса Z(t) в моменты времени T+1,...,T+P , учитывая влияние внешних факторов X 1 (t) ,...,X S (t) . При этом считаем, что значения внешних факторов в моменты времени X 1 (T+1) ,...,X 1 (T+P) ,...,X S (T+1) ,...,X S (T+P) являются доступными.

1) Для вычисления будущих значений процесса Z(t) в указанные моменты времени требуется определить функциональную зависимость , отражающую связь между прошлыми значениями Z(t) и будущими, а также принимающую во внимание влияние внешних факторов X 1 (t) ,...,X S (t) на исходный временной ряд

2) Кроме получения будущих значений требуется определить доверительный интервал возможных отклонений этих значений.

Задача прогнозирования временного ряда с учетом одного внешнего фактора представлена на


Рис. 1.3. Иллюстрация задачи прогнозирования временного ряда с учетом внешнего фактора

1.3. Обзор моделей прогнозирования

Перед тем как перейти к обзору моделей, необходимо отметить, что названия моделей и соответствующих методов как правило совпадают . Например, работы , , , посвящены одной из самых распространенных моделей прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression moving average external, ). Эту модель и соответствующий ей метод обычно называют . В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов.

Набор понятных для чтения материалов по вопросу классификации моделей и методов прогнозирования временных рядов можно найти по тегу .

Линейная регрессионная модель . Самым простым вариантом регрессионной модели является линейная регрессия. В основу модели положено предположение, что существует дискретный внешний фактор X(t) , оказывающий влияние на исследуемый процесс Z(t) , при этом связь между процессом и внешним фактором линейна. Модель прогнозирования на основании линейной регрессии описывается уравнением

где α 0 и α 1 - коэффициенты регрессии; ε t - ошибка модели. Для получения прогнозных значений Z(t) в момент времени t необходимо иметь значение X(t) в тот же момент времени t , что редко выполнимо на практике.

Множественная регрессионная модель . На практике на процесс Z(t) оказывают влияние целый ряд дискретных внешних факторов X 1 (t) ,…,X S (t) . Тогда модель прогнозирования имеет вид

Недостатком данной модели является то, что для вычисления будущего значения процесса Z(t) необходимо знать будущие значения всех факторов X 1 (t) ,…,X S (t) , что почти невыполнимо на практике.

В основу нелинейной регрессионной модели положено предположение о том, что существует известная функция, описывающая зависимость между исходным процессом Z(t) и внешним фактором X(t)

В рамках построения модели прогнозирования необходимо определить параметры функции A . Например, можно предположить, что

Для построения модели достаточно определить параметры . Однако на практике редко встречаются процессы, для которых вид функциональной зависимости между процессом Z(t) и внешним фактором X(t) заранее известен. В связи с этим нелинейные регрессионные модели применяются редко .

Модель группового учета аргументов (МГУА) была разработана Ивахтенко А.Г. . Модель имеет вид


(1.9)

Другой тип модели имеет большое значение в описании временных рядов и часто используется совместно с авторегрессией называется моделью скользящего среднего порядка q и описывается уравнением

Авторегрессионнная модель с распределенным лагом (autoregressive distributed lag models, ARDLM) недостаточно подробно описана в литературе. Основное внимание данной модели уделяется в книгах по эконометрике .

Часто при моделировании процессов на изучаемую переменную влияют не только текущие значения процесса, но и его лаги, то есть значения временного ряда, предшествующие изучаемому моменту времени. Модель авторегрессии распределенного лага описывается уравнением

Здесь φ 0 ,..., φ p - коэффициенты, l - величина лага. Модель () называется ARDLM(p,l) и чаще всего применяется для моделирования экономических процессов .

1.3.3. Модели экспоненциального сглаживания

Примеры реализации экспоненциального сглаживания можно найти по тэгу .

Модели экспоненциального сглаживания разработаны в середине XX века и до сегодняшнего дня являются широко распространенными в силу их простоты и наглядности.

Модель экспоненциального сглаживания (exponential smoothing, ES) применяется для моделирования финансовых и экономических процессов . В основу экспоненциального сглаживания заложена идея постоянного пересмотра прогнозных значений по мере поступления фактических. Модель ES присваивает экспоненциально убывающие веса наблюдениям по мере их старения. Таким образом, последние доступные наблюдения имеют большее влияние на прогнозное значение, чем старшие наблюдения.

Функция модели ES имеет вид

где α - коэффициент сглаживания, 0 < α < 1 ; начальные условия определяются как S(1) = Z(0) . В данной модели каждое последующее сглаженное значение S(t) является взвешенным средним между предыдущим значением временного ряда Z(t) и предыдущего сглаженного значения S(t-1) .

Модель Хольта или двойное экспоненциальное сглаживание применяется для моделирования процессов, имеющих тренд . В этом случае в модели необходимо рассматривать две составляющие: уровень и тренд . Уровень и тренд сглаживаются отдельно


(1.17)

Здесь α - коэффициент сглаживания уровня, как и в модели (1.16), γ - коэффициент сглаживания тренда.

Модель Хольта-Винтерса или тройное экспоненциальное сглаживание применяется для процессов, которые имеют тренд и сезонную составляющую

Здесь R(t) - сглаженный уровень без учета сезонной составляющей

G(t) - сглаженный тренд

а S(t) - сезонная составляющая

Величина L определяется длиной сезона исследуемого процесса. Модели экспоненциального сглаживания наиболее популярны для долгосрочного прогнозирования .

1.3.4. Нейросетевые модели

Набор читабельных материалов с примерами реализации нейронных сетей можно найти по тэгу

В настоящее время самой популярной среди структурных моделей является модель на основе искусственных нейронных сетей (artificial neural network, ANN) . Нейронные сети состоят из нейронов ().


Рис. 1.4. Нелинейная модель нейрона

Модель нейрона можно описать парой уравнений

(1.22)

где Z(t-1) ,...,Z(t-m) - входные сигналы; ω 1 ,...,ω m - синаптические веса нейрона; p - порог; φ(U(t)) - функция активации.

Функция активации бывают трех основных типов :

  • функция единичного скачка ;
  • кусочно-линейная функция ;
  • сигмоидальная функция .

Способ связи нейронов определяет архитектуру нейронной сети . Согласно работе , в зависимости от способа связи нейронов сети делятся на

  • однослойные нейронные сети прямого распространения ,
  • многослойные нейронные сети прямого распространения ,
  • рекуррентные нейронные сети .

Рис. 1.5. Трехслойная нейронная сеть прямого распространения

Таким образом, при помощи нейронных сетей возможно моделирование нелинейной зависимости будущего значения временного ряда от его фактических значений и от значений внешних факторов. Нелинейная зависимость определяется структурой сети и функцией активации.

Пример реализации в MATLAB трехслойной нейронной сети для прогнозирования энергопотребоения на 24 значения вперед можно найти в записи блога Создаем нейронную сеть для прогнозирования временного ряда .

1.3.5. Модели на базе цепей Маркова

Модели прогнозирования на основе цепей Маркова (Markov chain model) предполагают, что будущее состояние процесса зависит только от его текущего состояния и не зависит от предыдущих . В связи с этим процессы, моделируемые цепями Маркова, должны относиться к процессами с короткой памятью.

Пример цепи Маркова для процесса, имеющего три состояния , представлен на .

Рис. 1.6. Цепь Маркова с тремя состояниями

Здесь S 1 ,...,X 3 - состояния процесса Z(t) ; λ 12 S 1 в состояние S 2 , λ 23 - вероятность перехода из состояния S 2 в состояние S 3 и т.д. При построении цепи Маркова определяется множество состояний и вероятности переходов. Есть текущее состояние процесса S i , то качестве будущего состояния процесса выбирается такое состояние S i , вероятность перехода в которое (значение λ ij ) максимальна.

Таким образом, структура цепи Маркова и вероятности перехода состояний определяют зависимость между будущим значением процесса и его текущим значением .

1.3.6. Модели на базе классификационно-регрессионных деревьев

Классификационно-регрессионные деревья (classification and regression trees, CART) являются еще одной популярной структурной моделью прогнозирования временных рядов . Структурные модели CART разработаны для моделирования процессов, на которые оказывают влияние как непрерывные внешние факторы, так и категориальные. Если внешние факторы, влияющие на процесс Z(t) , непрерывны, то используются регрессионные деревья; если факторы категориальные, то - классификационные деревья. В случае, если необходимо учитывать факторы обоих типов, то используются смешанные классификационно-регрессионные деревья.


Рис. 1.7. Бинарное классификационно-регрессионное дерево

Согласно модели CART, прогнозное значение временного ряда зависит от предыдущих значений, а также некоторых независимых переменных. На приведенном на примере сначала предыдущее значение процесса сравнивается с константой Z 0 . Если значение Z(t-1) меньше Z 0 , то выполняется следующая проверка: X(t) > X 11 . Если неравенство не выполняется, то Z(t) = C 3 , иначе проверки продолжаются до того момента, пока не будет найден лист дерева, в котором происходит определение будущего значения процесса Z(t) . Важно, что при определении значения в расчет принимаются как непрерывные переменные, например, X(t) , так и категориальные Y , для которых выполняется проверка присутствия значения в одном из заранее определенных подмножеств. Значения пороговых констант, например, Z 0 , X 11 , а также подмножеств Y 11 ,Y 12 выполняется на этапе обучения дерева .

Таким образом, CART моделирует зависимость будущей величины процесса Z(t) при помощи структуры дерева, а также пороговых констант и подмножеств .

1.1.1. Другие модели и методы прогнозирования

Кроме классов моделей прогнозирования , рассмотренных выше, существуют менее распространенные модели и методы прогнозирования . Главным недостатком моделей и методов , упомянутых в настоящем разделе, является недостаточная методологическая база , т. е. недостаточно подробное описание возможностей как моделей, так и путей определения их параметров. Кроме того, в открытом доступе можно найти лишь небольшое количество статей, посвященных применению данных методов.

Метод опорных векторов (support vector machine, SVM) применяется, например, для прогнозирования движения рынков и цен на электроэнергию . В основу метода положена классификация, производимая за счет перевода исходных временных рядов, представленных в виде векторов, в пространство более высокой размерности и поиска разделяющей гиперплоскости с максимальным зазором в этом пространстве. Алгоритм SVM работает в предположении, что чем больше разница или расстояние между этими параллельными гиперплоскостями, тем меньше будет средняя ошибка классификатора . При этом задача прогнозирования решается таким образом, что на этапе обучения классификатора выявляются независимые переменные (внешние факторы), будущие значения которых определяют в какой из определенных ранее подклассов попадет прогноз Z(t) .

Генетический алгоритм (genetic algorithm, GA) был разработан и часто применяется для решения задач оптимизации, а также поисковых задач. Однако некоторые модификации GA позволяют решать задачи прогнозирования.

Важными являются их простота и прозрачность моделирования. Еще одним достоинством является единообразие анализа и проектирования, заложенное в работе . На сегодняшний день данный класс моделей является одним из наиболее популярных , а потому в открытом доступе легко найти примеры применения авторегрессионных моделей для решения задач прогнозирования временных рядов различных предметных областей.

Недостатками данного класса моделей являются: большое число параметров модели, идентификация которых неоднозначна и ресурсоемка ; низкая адаптивность моделей, а также линейность и, как следствие, отсутствие способности моделирования нелинейных процессов, часто встречающихся на практике .

. Достоинствами данного класса моделей являются простота и единообразие их анализа и проектирования. Данный класс моделей чаще других используется для долгосрочного прогнозирования .

Недостатком данного класса моделей прогнозирования является отсутствие гибкости .

Нейросетевые модели и методы . Основным достоинством нейросетевых моделей является нелинейность, т.е. способность устанавливать нелинейные зависимости между будущими и фактическими значениями процессов. Другими важными достоинствами являются: адаптивность, масштабируемость (параллельная структура ANN ускоряет вычисления) и единообразие их анализа и проектирования .

При этом недостатками ANN являются отсутствие прозрачности моделирования; сложность выбора архитектуры, высокие требования к непротиворечивости обучающей выборки; сложность выбора алгоритма обучения и ресурсоемкость процесса их обучения .

Простота и единообразие анализа и проектирования являются достоинствами моделей на базе цепей Маркова .

Недостатком данных моделей является отсутствие возможности моделирования процессов с длинной памятью .

Модели на базе классификационно-регрессионных деревьев . Достоинствами данного класса моделей являются: масштабируемость, за счет которой возможна быстрая обработка сверхбольших объемов данных; быстрота и однозначность процесса обучения дерева (в отличие от ANN) , а также возможность использовать категориальные внешние факторы.

Недостатками данных моделей являются неоднозначность алгоритма построения структуры дерева; сложность вопроса останова т.е. вопроса о том, когда стоит прекратить дальнейшие ветвления; отсутствие единообразия их анализа и проектирования .

Достоинства и недостатки моделей и методов систематизированы в таблице 1.

Таблица 1. Сравнение моделей и методов прогнозирования

Модель и метод Достоинства Недостатки
Регрессионные модели и методы простота, гибкость, прозрачность моделирования; единообразие анализа и проектирования сложность определения функциональной зависимости; трудоемкость нахождения коэффициентов зависимости; отсутствие возможности моделирования нелинейных процессов (для нелинейной регрессии)
Авторегрессионные модели и методы простота, прозрачность моделирования; единообразие анализа и проектирования; множество примеров применения трудоемкость и ресурсоемкость идентификации моделей; невозможность моделирования нелинейностей; низкая адаптивность
Модели и методы экспоненциального сглаживания недостаточная гибкость; узкая применимость моделей
Нейросетевые модели и методы нелинейность моделей; масштабируемость, высокая адаптивность; единообразие анализа и проектирования; множество примеров применения отсутствие прозрачности; сложность выбора архитектуры; жесткие требования к обучающей выборке; сложность выбора алгоритма обучения; ресурсоемкость процесса обучения
Модели и методы на базе цепей Маркова простота моделирования; единообразие анализа и проектирования невозможность моделирования процессов с длинной памятью; узкая применимость моделей
Модели и методы на базе классификационно-регрессионных деревьев масштабируемость; быстрота и простота процесса обучения; возможность учитывать категориальные переменные неоднозначность алгоритма построения дерева; сложность вопроса останова

Нужно дополнительно отметить, что ни для одной из рассмотренных групп моделей (и методов) в достоинствах не указана точность прогнозирования . Это сделано в связи с тем, что точность прогнозирования того или иного процесса зависит не только от модели , но и от опыта исследователя , от доступности данных , от располагаемой аппаратной мощности и многих других факторов. Точность прогнозирования будет оцениваться для конкретных задач , решаемых в рамках данной работы.

В ряде работ , , указано, что на сегодняшний день наиболее распространенными моделями прогнозирования являются авторегрессионные модели (ARIMAX), а также нейросетевые модели (ANN) . В статье , в частности, утверждается: «Without a doubt ARIMA(X) and GRACH modeling methodologies are the most popular methodologies for forecasting time series. Neural networks are now the biggest challengers to conventional time series forecasting methods» . (Без сомнений модели ARIMA(X) и GARCH являются самыми популярными для прогнозирования временных рядов. В настоящее время главную конкуренцию данным моделям составляют модели на основе ANN .)

1.4.2. Комбинированные модели

Одной из популярных современных тенденций в области создания моделей прогнозирования является создание комбинированных моделей и методов . Подобный подход дает возможность компенсировать недостатки одних моделей при помощи других и направлен на повышение точности прогнозирования, как одного из главных критериев эффективности модели.

Одной из первых работ в этой области является статья . В ней предлагается подход, в котором прогнозирование временного ряда осуществляется в два этапа . На первом этапе на основании моделей распознавания образов (pattern recognition) выделяются гомогенные группы (patterns) временного ряда . На следующем этапе для каждой группы строится отдельная модель прогнозирования . В статье указывается, что при комбинированном подходе удается повысить точность прогнозирования временных рядов .

В работе предлагается модель для прогнозирования цен на электроэнергию Испании. При помощи вейвлет преобразования (wavelet transform) доступные значения временного ряда разделяются на несколько последовательностей, для каждой из которых строится отдельная модель ARIMA.

В обзоре моделей прогнозирования энергопотребления рассматривается следующие типы комбинаций:

  • нейронные сети + нечеткая логика ;
  • нейронные сети + ARIMA ;
  • нейронные сети + регрессия ;
  • нейронные сети + GA + нечеткая логика ;
  • регрессия + нечеткая логика .

В большинстве комбинаций модели на основе нейронных сетей применяются для решения задачи кластеризации , а далее для каждого кластера строиться отдельная модель прогнозирования на основе ARIMA, GA, нечеткой логики и др. В работе утверждается, что применение комбинированных моделей , выполняющих предварительную кластеризации и последующее прогнозирование внутри определенного кластера, является наиболее перспективным направлением развития моделей прогнозирования .

Работа посвящена вопросам кластеризации временных рядов для того, чтобы на основании полученных кластеров выполнять прогнозирование. Для кластеризации предлагается два метода: метод K- cредних (K-mean) и метод нечетких C-средних (fuzzy C-mean). Целью обоих алгоритмов кластеризации является извлечение полезной информации из временного ряда для последующего прогнозирования. Авторы утверждают, что применение кластеризации дает возможность повысить точность прогнозирования.

Применение комбинированных моделей является направлением, которое при корректном подходе позволяет повысить точность прогнозирования . Главным недостатком комбинированных моделей является сложность и ресурсоемкость их разработки : нужно разработать модели таким образом, чтобы компенсировать недостатки каждой из них, не потеряв достоинств.

Ряд исследователей пошли по альтернативному пути и разработали авторегрессионные модели , в основе которых лежит предположение о том, что временной ряд есть последовательность повторяющихся кластеров (patterns). Однако при этом разработчики не создавали комбинированных моделей, а определяли кластеры и выполняли прогноз на основании одной модели . Рассмотрим эти модели подробнее.

В работе предложена модель прогнозирования направления движения индексов рынка (index movement), учитывающая кластеры временного ряда. Пусть временной ряд содержит три значения -1, 0 и 1, которые характеризуют спад, стабильное состояние и подъем рынка соответственно. Кластером (pattern) называется последовательность для i = 1,2,...,N-M , где N - число доступных отчетов временного ряда Z(t) . Для определения прогнозного значения рассмотрена последняя доступная информация, а именно последовательность Z(N,M) = Z(N-M+1),Z(N-M+2),...,Z(N) , для которой определена ближайшая похожая (closet match) Z(Q,M) = Z(Q+1),Z(Q+2),...,Z(Q+M) . При этом функция, определяющая близость, имеет вид

т.е. близость кластеров определяется простым сравнением. Далее вычисляется прогнозное значение

Таким образом, в данной модели предполагается, что если в некоторый момент времени в прошлом рынок вел себя определенным образом, то в будущем его поведение повторится в связи с тем, что временной ряд является последовательностью кластеров.

Еще в двух работах , предложена модель прогнозирования, основанная на модели авторегрессии, но принимающая во внимание кусочки временного ряда . Здесь прогнозное значение временного ряда определено выражением

которое является линейной авторегрессией порядка M . При этом коэффициенты авторегрессии α 0 ,α 1 ,…,α M определяются следующим образом. Предполагается, что существует K кусочков (векторов) длины M временного ряда, для которых выполняется выражение


(1.28)

При определении ближайших векторов (closest vectors) Z(i 1 -1) ,Z(i 1 -2) ,…,Z(i 1 -M) ,...,Z(i K -1) ,Z(i K -2) ,…,Z(i K -M) в статье использовано значение линейной корреляции Пирсона между всеми возможными векторами и новейшим вектором (last available vector) Z(t-1) , а также, , является перспективным в области создания моделей прогнозирования временных рядов . Предложенная в диссертации модель прогнозирования развивает модели , , и устраняет все перечисленные выше недостатки: модель позволяет учитывать влияния внешних факторов; формулируется критерий определения похожей выборки для двух видов постановок задачи прогнозирования (); количество параметром модели сокращается до одного, что существенно упрощает идентификацию модели.

1.5. Выводы

1) Задача прогнозирования временных рядов имеет высокую актуальность для многих предметных областей и является неотъемлемой частью повседневной работы многих компаний.

2) Установлено, что к настоящему времени разработано множество моделей для решения задачи прогнозирования временного ряда , среди которых наибольшую применимость имеют авторегрессионные и нейросетевые модели .

3) Выявлены достоинства и недостатки рассмотренных моделей . Установлено, что существенным недостатком авторегрессионных моделей является большое число свободных параметров, требующих идентификации; недостатками нейросетевых моделей является ее непрозрачность моделирования и сложность обучения сети.

4) Определено, что наиболее перспективным направлением развития моделей прогнозирования с целью повышения точности является создание комбинированных моделей , выполняющих на первом этапе кластеризацию, а затем прогнозирование временного ряда внутри установленного кластера.

Международный консорциум «Электронный университет»

Московский государственный университет экономики, статистики и информатики

Евразийский открытый институт

Н. А. Садовникова Р. А. Шмойлова

Анализ временных рядов и прогнозирование

Учебное пособие Руководство по изучению дисциплины

Практикум

Тесты Учебная программа

Москва 2004

С 143

Садовникова Н. А., Шмойлова Р.А. АНАЛИЗ ВРЕМЕННЫХ РЯДОВ И ПРОГ-

НОЗИРОВАНИЕ. Вып. 2: Учебное пособие, руководство по изучению дисциплины, практикум, тесты, учебная программа / Московский государственный университет экономики, статистики и информатики. - М., 2004. - 200 с.

1.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании социально-экономических

явлений и процессов...............................................................................................

1.2. Модель как отображение действительности........................................................

1.3. Понятие и основные принципы экономико-статистического анализа..............

1.4. Характеристика информационной базы и основные принципы

ее формирования.....................................................................................................

РАЗДЕЛ II. Моделирование динамики социально-экономических явлений

2.1. Временные ряды, их характеристики и задачи анализа.

Требования к исходной информации. ..................................................................

2.2. Основные особенности статистического анализа одномерных

временных рядов по компонентам ряда. ..............................................................

Моделирование тенденции....................................................................................

Выбор формы тренда..............................................................................................

Моделирование случайного компонента.............................................................

Модели периодических колебаний.......................................................................

2.7. Модели связных временных рядов.......................................................................

КОНТРОЛЬНЫЕ ВОПРОСЫ К РАЗДЕЛУ II.....................................................................

РАЗДЕЛ III. Прогнозирование динамики социально-экономических явлений

и процессов....................................................................................................

3.1. Сущность и классификация статистических прогнозов.....................................

Простейшие методы прогнозирования.................................................................

3.3. Прогнозирование на основе экстраполяции тренда............................................

3.4. Прогнозирование с учетом дисконтирования информации...............................

3.5. Прогнозирование на основе кривых роста...........................................................

3.6. Прогнозирование рядов динамики, не имеющих тенденции.............................

3.7. Оценка точности и надежности прогнозов..........................................................

КОНТРОЛЬНЫЕ ВОПРОСЫ К РАЗДЕЛУ III ...................................................................

ТЕСТЫ ДЛЯ САМОПРОВЕРКИ.........................................................................................

КОНТРОЛЬНАЯ РАБОТА...................................................................................................

Приложения к контрольной работе.....................................................................................

ГЛОССАРИЙ.........................................................................................................................

Заключение.............................................................................................................................

Приложения............................................................................................................................

РУКОВОДСТВО ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ.................................................

ПРАКТИКУМ.......................................................................................................................

ТЕСТЫ..................................................................................................................................

УЧЕБНАЯ ПРОГРАММА.................................................................................................

Учебное пособие

ВВЕДЕНИЕ

Введение

Развитие и повышение социально-экономического статуса и положения страны выдвигает на первый план задачу анализа и перспектив развития субъектов рыночных отношений на различных иерархических уровнях управления с целью выбора оптимальных управленческих решений, направленных на повышение эффективности и деловой активности их функционирования.

В этой связи возрастает роль методологии статистического моделирования и прогнозирования состояния, структуры и основных тенденций развития субъектов рыночных отношений вне зависимости от отраслевой принадлежности, форм собственности и внутренней структурной градации.

Учебное пособие «Анализ временных рядов и прогнозирование» включает в себя комплексную методологию моделирования и прогнозирования динамической информации, представленнойвременными рядами социально-экономических явлений и процессов.

В пособии нашло отражение обобщение отечественного и зарубежного опыта использования математико-статистических методов моделирования и прогнозирования со- циально-экономических явлений и процессов.

Важнейшая задача прогнозирования явлений и процессов - выявление закономерностей и установление основных тенденций развития. Для анализа общих тенденций не целесообразно рассматривать каждый случай в отдельности. Чем больше по числу единиц статистическая совокупность, тем, при прочих равных условиях, качественнее проявляется закономерность, присущая изучаемому явлению или процессу.

Устойчивые пропорции в экономических явлениях и процессах проявляются при действии закона больших чисел.

Моделирование и прогнозирование позволяют управлять массовыми экономическими явлениями и процессами и предвидеть их развитие.

Для моделирования и прогнозирования социально-экономических явлений и процессов решающее значение имеет принцип взаимной связи и взаимной обусловленности явлений. Для того, чтобы глубоко понять явление, необходимо изучить внешние и внутренние причинные взаимосвязи, познать конкретное состояние и условия его возникновения и существования.

Общественные явления находятся не только во взаимной связи, но и в непрерывном движении, изменении, развитии - именно это обусловливает необходимость прогнозирования.

Предметом моделирования и прогнозирования в сфере бизнеса является система, воспроизводящая объект исследования так, что на ее основе могут быть изучены структура и размещение социально-экономических явлений, их изменения во времени, связи и зависимости.

При моделировании объект, интересующий исследователя, заменяется некоторым другим объектом, который называется моделью.

Каковы же объективные основания замены одного объекта другим?

Предметы материального мира - целостные системы свойств, связей, отношений, процессов. Закономерная связь элементов является объективной основой моделирования и прогнозирования.

Элементы включены в совокупности не случайно, а закономерно координированы друг с другом, и, если два объекта сходны в каком-то существенном отношении, то они будут сходны и в другом отношении. Отсюда следует, что объектом моделирования и прогнозирования в сфере бизнеса являются статистические совокупности, их численность.

ВВЕДЕНИЕ

РАЗДЕЛ I. Теоретико-методологические аспекты моделирования явлений и процессов в сфере бизнеса

1. 1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании социально-экономических явлений и процессов

Моделирование и прогнозирование явлений и процессов предполагает использование системы статистических понятий, категорий и методов, трактовка которых углубляется в соответствии с их статистическими особенностями.

К важнейшим понятиям и категориям относится статистическая совокупность, статистическая закономерность, закон больших чисел, статистическая взаимосвязь, а также такие философские категории как качество и количество, мера, явление и сущность, единичное и всеобщее, случайное и необходимое.

Важнейшими методами, используемыми при моделировании социально-экономи- ческих явлений, являются методы статистического наблюдения, группировок, обобщающих показателей, корреляционного и регрессионного анализа и так далее.

Статистическая закономерность выражает конкретные казуальные отношения, она предопределяет типичное распределение единиц статистической совокупности на некоторый моментвремениподвоздействиемвсейсовокупностифакторов.

Условиями ее проявления являются: наличие статистической совокупности и действие закона больших чисел.

Зная статистическую закономерность, можно выявить условия и причины, порождающие ее, для того, чтобы направлять ее действия в заданное «русло», то есть либо поддерживать эти условия для ее устойчивости во времени, либо, меняя их, стремиться получить нужный результат.

Зная статистическую закономерность, можно с той или иной степенью точности предсказать развитие явления, раскрыть сущность и изучить его структуру.

Под статистической совокупностью (множеством) понимается множество единиц, обладающих массовостью, однородностью, определенной целостностью, взаимозависимостью состояний отдельных единиц и наличием вариации.

Статистические совокупности состоят из элементов, единиц совокупности, которые являются носителем свойств изучаемого явления или процесса.

Признаки бывают существенные и несущественные, прямые и косвенные, атрибутивные и количественные, первичные и вторичные, факторные и результативные, альтернативные.

Классификация статистических признаков имеет важное значение для построения статистических моделей и осуществления прогноза. Так, при моделировании в ряде случаев важно правильно выделить факторные и результативные признаки. Среди факторных признаков необходимо отбирать лишь самые существенные, определяющие основное содержание явлений.

Закон больших чисел выявляет устойчивые пропорции и соотношения в экономических явлениях и процессах. Он служит основой для моделирования процессов, создает возможность управлять ими и предвидеть их развитие.

Закон больших чисел определяет общее, существенное в явлениях, в их массе единиц, благодаря чему происходит взаимоотношение индивидуальных случайных различий.

Итак, моделирование - воспроизведение свойств исследуемого объекта в специально построенной модели. Для этой цели используются такие статистические методы

ГЛАВА I. ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ МОДЕЛИРОВАНИЯ ЯВЛЕНИЙ И ПРОЦЕССОВ В СФЕРЕ БИЗНЕСА

как статистическое наблюдение, метод группировок, обобщающих показателей, корреляционный и регрессионный анализ.

С помощью статистического наблюдения и социального эксперимента получают исходную информацию для моделирования и прогнозирования.

Метод группировок устанавливает наличие и направление связи между факторными и результативными признаками. Для объективных заключений о связи необходимо предварительно определить границу, за пределами которой влияние группировочного признака отсутствует.

На основе регрессионного и корреляционного анализа связи получают свое аналитическое выражение, устанавливается теснота связей между факторными и результативными признаками.

Значимость корреляционных характеристик определяется объективными особенностями исследуемой совокупности, а показатели регрессии и корреляции вычисляются как средние величины для совокупности в целом.

1.2. Модель как отображение действительности

Наши представления об окружающей действительности по природе своей являются приближенными копиями объективной реальности.

Термин «модель» отражает как раз эту условность, приблизительность знания об объективной действительности.

Что же такое модель?

В «Философском словаре» дается следующее определение: « Моделирование - воспроизведение свойств исследуемого объекта на специально построенном по определенным правилам аналоге его. Этот аналог называется моделью».

В «Философской энциклопедии» говорится: « Модель - условный образ (изображение, схема, описание) какого-либо объекта (или системы объектов) служит для выражения отношения между человеческими знаниями об объектах и этими объектами».

Таким образом, под моделью понимается условный образ какого-либо объекта, приближенно воссоздающий этот объект. Между объектом и его моделью существуют отношения сходства, условности.

Модель дает возможность установить в каждом явлении, объекте, процессе те основные, главные закономерности, которые присущи этим явлениям.

Отношения объекта и модели устанавливаются на основе объективно присущих оригиналу и модели свойств и отношений.

Прежде всего между моделью и объектом существует отношение соответствия (сходства), которое и позволяет исследовать моделируемый объект посредством изучения модели.

Но модель используется и для получения таких данных об объекте, которые или затруднительно, или невозможно получить путем непосредственного изучения оригинала. Для того, чтобы модель могла выполнить эту задачу, она должна быть не только сходной с оригиналом, но иотличаться от него. Отличие от оригинала - обязательный признак модели.

В процессе моделирования от установления отношений сходства между одними элементами модели и оригинала переходим к установлению отношений сходства между другими элементами оригинала и модели. Именно наличие такого перехода дает возможность получить новые данные об оригинале, о его свойствах, связях и отношениях.

Возможны два направления в моделировании.

ГЛАВА I. ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ АСПЕКТЫ МОДЕЛИРОВАНИЯ ЯВЛЕНИЙ И ПРОЦЕССОВ В СФЕРЕ БИЗНЕСА

Одно из направлений охватывает множество задач, в которых основное внимание уделено отысканию оптимальных характеристик процесса.

В качестве таких моделей часто выступают модели линейного программирования. Эти модели часто называют экономико-математическими , поскольку их применение связано главным образом с моделированием функциональных зависимостей.

Сущность статистического моделирования состоит в построении для данного явления модели, на основании которой изучается поведение элементов системы и взаимодействие между ними с учетом многих, имеющих случайный характер, факторов. Данное направление включает всебя корреляционный анализ, изучение законов распределения и другие.

Модели, выражающие количественно закономерность, которая проявляется в массе событий, называют экономико-статистическими моделями .

Повышенный интерес, проявляемый в последние годы к статистическим моделям, обусловлен наличием электронно-вычислительных машин, позволяющих обрабатывать большие массивы информации.

Статистические модели можно подразделить на два типа: статистические и временные . В первом случае речь идет об исследовании статистической совокупности. Единицей наблюдения здесь служат отдельные единицы пространственной совокупности, а в качестве статистической информации используются их показатели по состоянию на определенный период времени.

Временная модель рассматривает процесс изменения явления во времени. В качестве единицы наблюдения здесь выступает время, а исходной информацией служат ряды динамики явления и определяющие его факторы.

По своим познавательным функциям статистические модели подразделяются на

структурные, динамические и модели взаимосвязей.

1.3. Понятие и основные принципы экономико-статистического анализа

Анализ и обобщение данных исследования - заключительный этап статистического исследования, конечной целью которого является получение теоретических выводов и практических заключений о тенденциях и закономерностях изучаемых социальноэкономических явлений и процессов.

Анализ - это метод научного исследования объекта путем рассмотрения его отдельных сторон и составных частей.

Экономико-статистический анализ - это разработка методики, основанной на широком применении традиционных статистических и математико-статистических методов с целью контроля адекватного отражения исследуемых явлений и процессов.

Задачами анализа являются: определение и оценка специфики и особенностей изучаемых явлений и процессов, изучение их структуры, взаимосвязей и закономерностей их развития.

В качестве этапов статистического анализа выделяются:

1) формулировка цели анализа;

2) критическая оценка данных;

3) сравнительная оценка и обеспечение сопоставимости данных;

4) формирование обобщающих показателей;

5) фиксация и обоснование существенных свойств, особенностей, сходств и различий, связей и закономерностей изучаемых явлений и процессов;

6) формулировка заключений, выводов и практических предложений о резервах и перспективах развития изучаемого явления.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные методы прогнозирования

Методы социального прогнозирования

Методы финансового прогнозирования

Методы экономического прогнозирования

Статистические методы прогнозирования

Экспертные методы прогнозирования

Анализ временных рядов

Структурные компоненты временного ряда

Основные методы прогнозирования

Прогнозирование - это предсказание будущего на основании накопленного опыта и текущих предположений относительно него.

Прогнозирование представляет собой сложный процесс, по ходу которого необходимо решать большое количество различных вопросов. Для его производства следует применять в сочетании различные методы прогнозирования , которых на сегодняшний день существует огромное множество, но на практике используются всего 15 - 20. На наиболее популярных из них мы и остановимся.

Метод экспертных оценок. Суть данного метода заключается в том, что в основе прогноза лежит мнение одного специалиста или группы специалистов, которое основано на профессиональном, практическом и научном опыте. Различают коллективные и индивидуальные экспертные оценки, часто используется при оценке персонала.

Метод экстраполяции. Основная идея экстраполяции - изучение сложившихся как в прошлом, так и настоящем стойких тенденций развития предприятия и перенос их на будущее. Различают прогнозную и формальную экстраполяцию. Формальная - основывается на предположении о том, что в будущем сохранятся прошлые и настоящие тенденции развития предприятия; при прогнозной - настоящее развитие увязывают с гипотезами о динамике предприятия с учетом того, что в будущем изменится влияние на него различных факторов. Следует знать, что методы экстраполяции лучше применять на начальной стадии прогнозирования, чтобы выявить тенденции изменения показателей.

Методы моделирования. Моделирование - это конструирование модели на основании предварительного изучения объекта и процессов, выделение его существенных признаков и характеристик. Прогнозирование с использованием моделей включает в себя ее разработку, экспериментальный анализ, сопоставление результатов предварительных прогнозных расчетов с фактическими данными состояния процесса или объекта, уточнение и корректировку модели.

Метод экономического прогнозирования (экономический анализ) заключается в том, что какой либо экономический процесс или явление, имеющие место на предприятии, расчленяются на части, после чего выявляется влияние и взаимосвязь этих частей на ход и развитие процесса, а также друг на друга. При помощи анализа можно раскрыть сущность такого процесса, а также определить закономерности его изменения в будущем, всесторонне оценить пути достижения поставленных целей. Поскольку экономический анализ - это необъемлемая часть и один из элементов логики прогнозирования, он должен осуществляться на макро-, мезо- и микроуровнях. Используется при планировании производства на предприятии. прогнозирование экономический временной экспертный

Процесс экономического анализа можно подразделить на несколько стадий:

* постановка проблемы, определение критериев оценки и целей;

* подготовка необходимой для анализа информации;

* аналитическая обработка информации после ее изучения;

* оформление результатов.

Балансовый метод. Данный метод основан на разработке балансов, которые представляют собой систему показателей, где первая часть, характеризующая ресурсы по источникам их поступления, равна второй, отражающей распределение их по всем направлениям расхода.

При помощи балансового метода воплощается в жизнь принцип пропорциональности и сбалансированности, который применяется при разработке прогнозов. Его суть заключается в увязке потребностей предприятия в различных видах сырьевых, материальных, финансовых и трудовых ресурсах с возможностями производства продукта и источниками ресурсов. Таким образом, система балансов, которую используют в прогнозировании, включает: финансовые, материальные и трудовые балансы. В каждую из данных групп входит еще ряд балансов.

Нормативный метод - один из основных методов прогнозирования. В настоящее время ему стало придаваться большое значение. Его сущность заключается в технико-экономических обоснованиях прогнозов с использованием нормативов и норм. Последние применяются при расчете потребности в ресурсах, а также показателей их использования.

Программно-целевой метод (ПЦМ). В сравнении с другими методами данный метод является сравнительно новым и недостаточно разработанным. Он начал широко применяться только в последние годы. ПЦМ тесно связан с уже рассмотренными методами и предполагает разработку прогноза начиная с оценки итоговых потребностей на основании целей развития предприятия при дальнейшем определении и поиске эффективных средств и путей их достижения, а также ресурсного обеспечения.

Суть ПМЦ заключается определении основных целей развития предприятия, разработки взаимосвязанных мероприятий по их достижению в заранее определенные сроки при сбалансированном обеспечении ресурсами, а также с учетом эффективного их использования.

Кроме прогнозирования, ПМЦ применяется при создании комплексных целевых программ, которые представляют собой документ, где отражены цель и комплекс производственных, организационно-хозяйственных, социальных и других мероприятий и заданий, увязанных по исполнителям, срокам осуществления и ресурсам.

Методы социального прогнозирования

Социальное прогнозирование как исследование с широким охватом объектов анализа опирается на множество методов. При классификации методов прогнозирования выделяются основные их признаки, позволяющие их структурировать по: степени формализации; принципу действия; способу получения информации.

Степень формализации в методах прогнозирования в зависимости от объекта исследования может быть различной; способы получения прогнозной информации многозначны, к ним следует отнести: методы ассоциативного моделирования, морфологический анализ, вероятностное моделирование, анкетирование, метод интервью, методы коллективной генерации идей, методы историко-логического анализа, написания сценариев и т.д. Наиболее распространенными методами социального прогнозирования являются методы экстраполяции, моделирования и экспертизы.

Экстраполяция означает распространение выводов, касающихся одной части какого-либо явления, на другую часть, на явление в целом, на будущее. Экстраполяция основывается на гипотезе о том, что ранее выявленные закономерности будут действовать в прогнозном периоде. Например, вывод об уровне развития какой-либо социальной группы можно сделать по наблюдениям за ее отдельными представителями, а о перспективах культуры - по тенденциям прошлого.

Экстраполяционный метод отличается многообразием - насчитывает не менее пяти различных вариантов. Статистическая экстраполяция - проекция роста населения по данным прошлого - это один из важнейших методов современного социального прогнозирования.

Моделирование - это метод исследования объектов познания на их аналогах - вещественных или мысленных.

Аналогом объекта может быть, например, его макет, чертеж, схема и т.д. В социальной сфере чаще используются мысленные модели. Работа с моделями позволяет перенести экспериментирование с реального социального объекта на его мысленно сконструированный дубликат и избежать риска неудачного, тем более опасного для людей управленческого решения. Главная особенность мысленной модели и состоит в том, что она может быть подвержена каким угодно испытаниям, которые практически состоят в том, что меняются параметры ее самой и среды, в которой она (как аналог реального объекта) существует. В этом огромное достоинство модели. Она может выступить и как образец, своего рода идеальный тип, приближение к которому может быть желательно для создателей проекта.

Самый практикуемый метод прогнозирования - экспертная оценка. По мнению Е.И.Холостовой, «экспертиза есть исследование трудноформализуемой задачи, которое осуществляется путем формирования мнения (подготовки заключения) специалиста, способного восполнить недостаток или несистемность информации по исследуемому вопросу своими знаниями, интуицией, опытом решения сходных задач и опорой на «здравый смысл».

Существуют такие сферы социальной жизни, в которых невозможно использовать другие методы прогнозирования , кроме экспертных. Прежде всего, это касается тех сфер, где отсутствует необходимая и достаточная информация о прошлом.

При экспертной оценке состояния либо отдельной социальной сферы, либо ее составляющего элемента, либо ее компонентов учитывается ряд обязательных положений, методических требований.

Прежде всего - оценка исходной ситуации:

Факторы, предопределяющие неудовлетворительное состояние;

Направления, тенденции, наиболее характерные для данного состояния ситуации;

Особенности, специфика развития наиболее важных составных;

Наиболее характерные формы работы, средства, с помощью которых осуществляется деятельность.

Второй блок вопросов включает в себя анализ деятельности тех организаций и служб, которые осуществляют эту деятельность. Оценка их деятельности идет по выявлению тенденций в их развитии, их рейтинга в общественном мнении.

Экспертную оценку проводят специальные центры экспертизы, научные информационно-аналитические центры, лаборатории экспертов, экспертные группы и отдельные эксперты.

Методика экспертной работы включает в себя ряд этапов:

Определяется круг экспертов;

Выявляются проблемы;

Намечается план и время действий;

Разрабатываются критерии для экспертных оценок;

Обозначаются формы и способы, в которых будут выражены результаты экспертизы (аналитическая записка, «круглый стол», конференция, публикации, выступления экспертов).

Итак, социальное прогнозирование опирается на различные методы исследования, основными из которых являются экстраполяция, моделирование и экспертиза.

Методы финансового прогнозирования

Финансовое прогнозирование по методу бюджетирования

Процесс бюджетирования является составной частью финансового планирования - процесса определения будущих действий по формированию и использованию финансовых ресурсов.

Бюджетирование - процесс построения и исполнения бюджета предприятия на основе бюджетов отдельных подразделений.

Бюджет - детализированный план деятельности предприятия на ближайший период, который охватывает доход от продаж, производственные и финансовые расходы, движение денежных средств, формирование прибыли предприятия.

Бюджеты подразделяются на два основных вида:

Операционный бюджет, отражающий текущую (производственную) деятельность предприятия;

Финансовый бюджет, представляющий собой прогноз финансовой отчетности.

План прибылей и убытков - основной документ операционного бюджета. Содержит данные о величине и структуре выручки от продаж, себестоимости реализованной продукции и конечных финансовых результатах.

Финансовый бюджет составляется с учетом информации, содержащейся в бюджете о прибылях и убытках.

Одним из основных этапов бюджетирования является прогнозирование движения денежных средств.

Бюджет движения денежных средств - это план денежных поступлений и платежей. При расчете бюджета движения денежных средств принципиально важно определить время поступлений и платежей, а не время исполнения хозяйственных операций.

Значение общего бюджета для предприятия раскрывается через следующие его функции:

Планирование операций, обеспечивающих достижение целей предприятия;

Координация различных видов деятельности и отдельных подразделений. Согласование интересов отдельных работников и групп в целом по предприятию;

Стимулирование руководителей всех рангов на достижение целей своих центров ответственности;

Контроль текущей деятельности, обеспечение плановой дисциплины;

Основа для оценки выполнения плана центрами ответственности и их руководителей;

Средство обучения менеджеров.

В отличие от формализованных отчетах о прибылях и убытках или бухгалтерского баланса, бюджет не имеет стандартизированной формы, которая должна строго соблюдаться. Бюджет может иметь бесконечное количество видов и форм. Форма и структура бюджета зависят от многих факторов: масштаба деятельности предприятия; достаточности и доступности исходной информации; состояния нормативной базы предприятия; от квалификации и опыта разработчика.

Финансовое прогнозирование по методу « процента от продаж

Существует два основнх метода финансового прогнозирования. Один из них - метод бюджетирования - представлен в разделе 3 методических указаний. Напомним, что он основан на концепции денежных потоков и его аналогом служит расчет финансовой части бизнес-плана.

Второй метод называется метод «процента от продаж» (первая модификация) или метод «формулы» (вторая модификация). Его преимущества - простота и лаконичность. Применяется для ориентировочных расчетов потребности во внешнем финансировании.

Факторы, оказывающие влияние на величину потребности в дополнительном финансировании:

Планируемый темп роста объема реализации;

Исходный уровень использования основных средств;

Капиталоемкость (ресурсоемкость) продукции;

Рентабельность продукции;

Дивидендная политика.

Метод «процента от продаж» - метод пропорциональной зависимости показателей деятельности предприятия от объема реализации.

Все вычисления по методу «процента от продаж» (методу «формулы») делаются на основе следующих предположений:

1. Переменные затраты, текущие активы и текущие обязательства при наращивании объема продаж на определенное количество процентов увеличиваются, в среднем, на столько же процентов. Это означает, что и текущие активы, и текущие пассивы будут составлять в плановом периоде прежний процент от выручки;

2. Процент увеличения стоимости основных средств рассчитывается под заданный процент наращивания оборота в соответствие с:

а) технологическими условиями бизнеса;

б) учетом наличия недогруженных основных средств на начало периода прогнозирования;

в) в соответствие со степенью материального и морального износа наличных основных средств и т.п.;

3. Долгосрочные обязательства и акционерный капитал берутся в прогноз неизменными;

4. Нераспределенная прибыль прогнозируется с учетом нормы распределения чистой прибыли на дивиденды и чистой рентабельности реализованной продукции.

Для прогнозирования нераспределенной прибыли к нераспределенной прибыли базового периода прибавляют прогнозируемую чистую прибыль и вычитают дивиденды.

Методы экономического прогнозирования

Особое место в классификации методов экономического прогнозирования занимают так называемые комбинированные методы, которые объединяют различные другие методы. Например, коллективные экспертные оценки и методы моделирования или статистические и опрос экспертов.

В качестве информации используется фактографическая и экспертная информация.

При классификации методов прогнозирования необходимо иметь в виду, что содержательная систематизация методов прогнозирования должна определяться самим объектом прогнозирования, экономическими процессами развития и их закономерностями.

С точки зрения оценки возможных результатов и путей прогнозного научно-технического развития прогнозы можно классифицировать по трем этапам: исследовательскому, программному и организационному.

Задачей исследовательского прогноза является определение возможных результатов будущего развития и выбор из множества возможных вариантов одного или нескольких положительных результатов. Так, например, развитие средств вычислительной техники можно отразить в росте их быстродействия, увеличении объема памяти и диапазона логических возможностей.

Основная цель этого этапа состоит в раскрытии широкой гаммы принципиально возможных перспектив в виде одной или ряда научно-технических проблем, подлежащих решению в течение прогнозируемого периода.

Программный аспект прогноза заключается в определении возможных путей достижения желаемых и необходимых результатов; ожидаемого по времени реализации каждого из возможных варианта и степени достоверности в успешном достижении некоторого результата по тому или иному варианту.

Организационная сторона прогноза включает в себя комплекс организационно-технических мероприятий, обеспечивающих достижение определенного результата по тому или иному варианту. В организационном аспекте исходят из представления о наличных экономических ресурсах и накопленном научном потенциале. Здесь должна быть сформулирована обоснованная гипотеза развития комплекса организационных параметров науки, дана вероятностная оценка рекомендуемой схеме распределения ресурсов и перспективам роста научного потенциала на прогнозируемый период.

Рассмотренные этапы научно-технического развития, как правило, выступают комплексно и находятся во взаимосвязи.

Статистические методы прогнозирования

Статистические методы прогнозирования охватывают разработку, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных (в том числе непараметрических методов наименьших квадратов с оцениванием точности прогноза, адаптивных методов, методов авторегрессии и других); развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования, в том числе методов анализа субъективных экспертных оценок на основе статистики нечисловых данных; разработку, изучение и применение методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научная база статистических методов прогнозирования -- прикладная статистика и теория принятия решений. Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, то есть функции, определенной в конечном числе точек на оси времени. При этом временной ряд часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные) помимо времени, напр., объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи -- интерполяция и экстраполяция.

Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794--1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах.

Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше. Накоплен опыт прогнозирования индекса инфляции и стоимости потребительской корзины. Оказалось полезным преобразование (логарифмирование) переменной -- текущего индекса инфляции. Оценивание точности прогноза (в частности, с помощью доверительных интервалов) -- необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, напр., строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, предложены непараметрические методы доверительного оценивания точки наложения (встречи) двух временных рядов для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке. Применяются также эвристические приемы, не основанные на вероятностно статистической теории: метод скользящих средних, метод экспоненциального сглаживания.

Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения, -- основной на настоящий момент статистический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от ноля в непараметрической постановке, строить доверительные границы для прогноза. Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен. Его желательно сократить, и отдельное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно нерешена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение. Перспективны непараметрические методы оценивания плотности вероятности и их применение для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных. К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах. Для установления возможности применения асимптотических результатов при конечных (т.н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстрепметодов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.

Прогнозирование на основе данных, имеющих нечисловую природу, например, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет рационального объема выборки, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи -- дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), -- давая единый подход к формально различным методам, полезны при программной реализации современных статистических методах прогнозирования. Основные процедуры обработки прогностических экспертных оценок -- проверка согласованности, кластер анализ и нахождение группового мнения.

Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Смита. Используются параметрические модели парных сравнений -- Терстоуна, БредлиТерриЛьюса -- и непараметрические модели теории люсианов. Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели. Используют также различные методы построения итогового мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов в случае, когда их оценки даны в виде ранжировки.

Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, т.е. мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они -- независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра -- «истины», а общее количество экспертов достаточно велико. В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий).

Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов. Современные компьютерные технологии прогнозирования основаны на интерактивных Статистические методы прогнозирования и использовании баз эконометрических данных, имитационных (в том числе на основе применения метода статистических испытаний) и экономико-математических динамических моделей, сочетающих экспертные, математико-статистические и моделирующие блоки.

Экспертные методы прогнозирования

Эксперт - квалифицированный специалист, привлекаемый для формирования оценок относительно объекта прогнозирования. Экспертная группа - коллектив экспертов, сформированный по определенным правилам. Суждение эксперта или экспертной группы относительно поставленной задачи прогноза называется экспертной оценкой; в первом случае используется термин «индивидуальная экспертная (прогнозная) оценка», а во втором - «коллективная экспертная (прогнозная) оценка». Способность эксперта создавать на базе профессиональных знаний, интуиции и опыта достоверные оценки относительно объекта прогнозирования характеризует его компетентность. Последняя имеет количественную меру, называемую коэффициентом компетентности. То же справедливо и в отношении экспертной группы: компетентность экспертной группы - это ее способность создавать достоверные оценки относительно объекта прогнозирования, адекватные мнению генеральной совокупности экспертов; количественная мера компетентности экспертной группы определяется на основе обобщения коэффициентов компетентности отдельных экспертов, входящих в группу.

Экспертный метод прогнозирования - метод прогнозирования, базирующийся на экспертной информации. В теоретическом аспекте правомерность использования экспертного метода подтверждается тем, что методологически правильно полученные экспертные суждения удовлетворяют двум общепринятым в науке критериям достоверности любого нового знания: точности и воспроизводимости результата. В таблице даны наименования и краткие характеристики основных экспертных методов, используемых при разработке социально-экономических прогнозов.

Анализ временных рядов

Цели, методы и этапы анализа временных рядов

Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

Описание характерных особенностей ряда в сжатой форме;

Построение модели временного ряда;

Предсказание будущих значений на основе прошлых наблюдений;

Управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

графическое представление и описание поведения ряда;

выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются:

корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

спектральный анализ, позволяющий находить периодические составляющие временного ряда;

методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

методы прогнозирования.

Структурные компоненты временного ряда

Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие: детерминированную и случайную (рис.1). Под детерминированной составляющей временного ряда понимают числовую последовательность, элементы которой вычисляются по определенному правилу как функция времени t. Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом - плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.

В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:

Тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать: а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.

Сезонный эффект s, связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.

Размещено на Allbest.ru

...

Подобные документы

    Сущность экономического прогнозирования, характеристика основных форм предвидения. Предвидение внутренних и внешних условий деятельности. Виды прогнозов и технология прогнозирования. Методы прогнозирования: экспертные, статистические, комбинированные.

    курсовая работа , добавлен 22.12.2009

    Изучение методов прогнозирования развития: экстраполяции, балансового, нормативного и программно-целевого метода. Исследование организации работы эксперта, формирования анкет и таблиц экспертных оценок. Анализ математико-статистические моделей прогноза.

    контрольная работа , добавлен 19.06.2011

    Понятие, функции и методы прогнозирования – научно-обоснованного суждения о возможных состояниях объекта в будущем, об альтернативных путях и сроках их достижения. Классификация методов прогнозирования: социосинергетика, "коллективная генерация идей".

    курсовая работа , добавлен 10.03.2011

    Сущность основных понятий в области прогнозирования. Признаки классификации, виды прогнозов и их характеристика. Экстраполятивный и альтернативный подходы. Статистический и экспертный методы, их разновидности. Содержание и этапы разработки плана сбыта.

    реферат , добавлен 25.01.2010

    Сущность и структура системы социально-экономического прогнозирования, виды прогнозов и возможности их применения для предприятия. Мероприятия по планированию деятельности предприятия, их уровни и назначение. Экспертные методы, пути прогнозирования.

    реферат , добавлен 27.06.2010

    Суть форсайта как метода долгосрочного прогнозирования. Методы прогнозирования, применяемые в форсайтах. Критические технологии, экспертные панели. Особенности корпоративного форсайта. Применение метода корпоративных технологических "дорожных карт".

    курсовая работа , добавлен 26.11.2014

    Знакомство с основными проблемами прогнозирования, способы решения. Сглаживающие модели прогнозирования. Анализ подходов искусственного интеллекта: биологическая аналогия, архитектура сети, гибридные методы. Работа программы по прогнозу нейронных сетей.

    дипломная работа , добавлен 27.06.2012

    Методы прогнозирования, используемые в инновационном менеджменте. Шкалы и методы измерений в экспертном оценивании. Организация и проведение экспертизы. Получение обобщенной оценки на основе индивидуальных оценок экспертов, согласованность мнений.

    курсовая работа , добавлен 07.05.2013

    курсовая работа , добавлен 24.12.2011

    Понятия прогнозирования и планирования. Почему прогнозировать сложно. Различные виды неопределенностей. Критерии классификации планирования. Основные техники и виды планирования. Основные методы прогнозирования. Планирование как управленческое решение.

В этой статье попытаемся дать общее представление о статистических методах прогнозирования временных рядов .

Прогноз – возможное состояние объекта в будущем, а также суждение об альтернативных путях достижения этого состояния в будущем.

Классификация прогнозов :
По масштабности выделяют следующие прогнозы:

  • Прогнозы микроуровня
  • Прогнозы макроуровня
  • Глобальные прогнозы

По времени прогнозы делят на:

  • Краткосрочные
  • Среднесрочные
  • Долгосрочные

Это довольно условное деление, так как деление производит эксперт, изучающий временные ряды.

Прогнозирование можно рассматривать на двух уровнях:

  • Прогнозирование как предсказание
  • Прогнозирование как предуказание

Предсказание – отвечает на вопрос «что нам ожидать в будущем?», описывает перспективы изменения объекта исследования в будущем. (Такие прогнозы называют поисковыми )
Предуказание – отвечает на вопрос «что нам нужно изменить в будущем, что бы получить заданное состояние объекта?», возможное решение проблем, возникающих при предсказании. (Такие прогнозы называют нормативными ).

Этапы прогнозирования включают в себя следующие уровни:

  • Сбор необходимой задачи для прогноза
  • Предобработка данных
  • Определение моделей прогнозирования
  • Оценка параметров выбранных моделей
  • Проверка на адекватность выбранной модели
  • Выбор лучшей модели для прогнозирования
  • Построение прогноза по выбранной модели
  • Анализ результатов

Изменение экономико-финансовых показателей чаще всего отражается временными и динамическими рядами.
Динамические ряды – совокупность последовательных наблюдений показателя х в зависимости от изменения показателя y.
Временные ряды – называют совокупность последовательных наблюдений, упорядоченных во временной последовательности.

Рисунок 1. Пример временного ряда

Временные ряды можно разделить на моментные и интервальные ряды . Моментные временные ряды – наблюдения характеризуют объект на определенный момент времени. Интервальные временные ряды – ряд наблюдений характеризует объект за определенный период времени.
Процесс прогнозирования финансово-экономических рядов состоит в определении и выделении закономерностей, которые объясняли динамику изменения процесса в прошлом, для того чтобы потом использовать ее для описания ее развития в будущем. Для успешного осуществления процесса прогнозирования необходимо, что бы анализируемый временной ряд был достаточной длины (свойство полноты информации ), во временном ряде не должно быть пропусков (свойство непрерывности ). Соответствие изучаемого временного ряда этим требованиям проверяется на этапе «Предварительная обработка данных».

Давайте рассмотрим компоненты временного ряда.

  • Трендовая - T
  • Сезонная - S
  • Циклическая -C
  • Нерегулярная - e

Тренд – направленное изменение значений наблюдаемого временного ряда. Наряду с трендовыми движениями, в экономических процессах часто присутствует сезонная составляющая, которая представляет период колебания показателей, не превышающих 1 год. Если период более 1 года, то говорят, что во временном ряду присутствует циклическая составляющая. Если из изучаемого ряда убрать трендовую составляющую и периодическую (циклическая и сезонная), то останется нерегулярная, случайная компонента.
Если временной ряд равен сумме своих компонент
Y=T+S+C+e,
то полученная модель ряда называется аддитивной , если в виде произведения
Y=T*S*C*e,
то это мультипликативная модель.
Смешанный тип модели временного ряда соответственно представлен формулой
Y=T*S*C+e, где Y-значение временного ряда.
Если все компоненты во временном ряду правильно выделены, то случайная недетерминированная, некоррелированная компонента е обладает следующими свойствами:

  • е – является случайными величинами
  • случайные величины распределены по нормальному закону распределения
  • имеет математическое ожидание равно 0

Предобработка временных рядов


Аномальные наблюдения могут возникнуть из-за ошибок в измерении и передачи информации (ошибки первого рода – подлежат устранению) или воздействия на изучаемый процесс редко появляющихся объективных факторов (ошибки второго рода – не подлежат устранению).
Устранение аномальных наблюдений производится в 2 этапа: поиск аномальных наблюдений по методу Ирвинга и замена их на среднее арифметическое соседних значений.




Одним из самых распространённых методов сглаживания временных рядов является метод скользящей средней. Суть использования метода заключается в замене значений временного ряда на более сглаженные значения, подверженные колебаниям в меньшей степени. Скользящие средние позволяют выявить тенденцию в развитии процесса и отфильтровать компоненты временного ряда, а также подготовить данные для построения модели прогнозирования.
Сглаживание может производиться следующими методами:

  • Простой скользящей средней (SMA)
  • Взвешенной скользящей средней (WMA)
  • Экспоненциальной скользящей средней (EMA)
  • Критерий восходящих/нисходящих серий Кокса-Стюарта
  • Критерий серий (основанный на медиане выборки)
  • Метод Фостера-Стюарта
  • Метод автокорреляционных функций

Расчет количественных характеристик развития экономических процессов включает в себя определение: расчета абсолютных приростов , расчета темпов роста , выявления автокорреляции временного ряда. В основе вычисления этих показателей лежит сравнение значений временного ряда. Такой подход к анализу и прогнозированию процесса применим, если изучаемый временной ряд имеет линейную тенденцию. К недостаткам такого анализа следует отнести то, что в нем учитывается только конечные и начальные значения временного ряда и исключается влияние промежуточных данных.

Построение моделей временных рядов
Формирование значений временного ряда определяется тремя закономерностями:

  • Инерцией тенденции
  • Инерцией взаимосвязи между последовательными значениями временного ряда
  • Инерцией взаимосвязи между исследуемым показателем и показателями – факторами, оказывающие на него воздействие

В соответствии с этими закономерностями выделяют задачи анализа и моделирования тенденций (решается с помощью моделей кривых роста ), анализа взаимосвязи между значениями временного ряда (решается с помощью адаптивных моделей ), анализа причинных взаимодействий между исследуемым показателем и показателями – факторами (решается регрессионными методами ).
Кривая роста – плавная кривая, аппроксимирующая временной ряд. Аналитические методы выделения неслучайной составляющей временного ряда с помощью кривых роста реализуется в рамкам модели регрессии.
Процедура разработки прогноза по кривым роста:

  • Выбор кривой роста
  • Оценка параметров выбранной кривой
  • Расчет точного и интервального прогноза
  • Оценка полученного прогноза

Кривые роста делятся на три класса. К первому классу относят кривые для описания монотонных процессов развития объекта. Ко второму классу относят кривые, которые описывают процессы с пределом роста в исследуемом периоде (их называют кривые насыщения ). Если кривые насыщения имеют точку перегиба, то они относятся к 3му классу S – образных кривых.


1 класс кривых роста включает – полином первого порядка, второго, третьего, экспоненту, экспоненциальные кривые.
2 класс кривых роста включает – модифицированную экспоненту.
3 класс кривых – Кривая Гомперца, логистическая кривая.

Наиболее простой способ выбрать кривую роста – визуальный метод. Подбирают кривую, наиболее точно описывающую исследуемый процесс.
Оценка качества полученной модели для прогнозирования по кривым роста производится при проверке адекватности и оценки точности модели .
В проверку адекватности входит: проверка независимости (отсутствие автокорреляции по критерию Дарбина-Уотсона), проверка случайности, соответствие остатков временного ряда случайному распределению(R/S критерий), равенство 0 средней ошибки.
Точность модели оценивается по методу МНК , т.е. кривая подбирается таким образом, чтобы график функции кривой роста располагался на минимальном удалении от точек процесса.

07.10.2013 Тайлер Чессман

Понимание ключевых идей прогнозирования временных рядов и ознакомление с некоторыми деталями даст вам преимущество в использовании возможностей прогнозирования в SQL Server Analysis Services (SSAS)

В этой статье будут описаны основные понятия, необходимые для освоения технологий интеллектуального анализа данных. Кроме того, мы рассмотрим некоторые тонкости, чтобы, столкнувшись с ними на практике, вы не были обескуражены (см. врезку «Почему интеллектуальный анализ данных так непопулярен»).

Время от времени специалистам по SQL Server приходится делать перспективные оценки будущей стоимости, например прогнозы доходов или продаж. Организации иногда применяют технологию интеллектуального анализа данных (data-mining) в построении моделей прогнозирования, чтобы предоставить такие оценки. Разобравшись в основных понятиях и некоторых деталях, вы начнете с успехом использовать возможности прогнозирования в SQL Server Analysis Services (SSAS).

Методы прогнозирования

Существуют различные подходы к прогнозированию. Например, сайт Forecasting Methods (forecastingmethods.org) выделяет различные категории методов прогнозирования, включая казуальные (иначе называемые экономико-математическими), экспертное моделирование (субъективные), временные ряды, искусственный интеллект, рынок прогнозов, вероятностное прогнозирование, моделирование прогнозирования, а также метод прогнозирования на основе референсных классов. Веб-сайт Forecasting Principles (www.forecastingprinciples.com) дает представление о методах в виде методологического дерева, прежде всего разделяя субъективные методы (то есть методы, используемые при недостатке имеющихся данных для количественного анализа) и статические (то есть методы, используемые, когда доступны соответствующие числовые данные). В этой статье я остановлюсь на прогнозировании временных рядов, типе статического подхода, в котором накопленных данных достаточно для прогнозирования показателей.

Прогнозирование временных рядов предполагает, что данные, полученные в прошлом, помогают объяснить значения в будущем. Важно понимать, что в ряде случаев мы имеем дело с деталями, не отраженными в накопленных данных. Например, появится новый конкурент, который может неблагоприятно повлиять на будущие доходы или быстрые изменения в составе рабочей силы, которые могут повлиять на показатели уровня безработицы. В подобных ситуациях прогнозирование временных рядов не может быть единственным подходом. Зачастую различные подходы к прогнозированию объединяют, чтобы обеспечить наиболее точные прогнозы.

Понимание основ прогнозирования временных рядов

Временные ряды – это совокупность значений, полученных в период времени, обычно через равные интервалы. Общие примеры включают количество продаж в неделю, квартальные расходы и уровни безработицы по месяцам. Данные временных рядов представлены в графическом формате, с временным интервалом вдоль оси координат x графика и значениями вдоль оси y, как показано на экране 1.

Если рассматривать, как меняется значение от одного периода до другого и как прогнозировать значения, следует иметь в виду, что данные временных рядов обладают некоторыми важными характеристиками.

  • Базовый уровень (Base level). Базовый уровень, как правило, определяется как среднее значение временного ряда. В некоторых моделях прогнозирования базовый уровень обычно определяется как начальное значение данных ряда.
  • Тренд (Trend). Тренд, как правило, показывает, как временные ряды изменяются от одного периода к другому. На примере, представленном на экране 1, число безработных имеет тенденцию роста с начала 2008 года до января 2010 года, после чего линия тренда направляется вниз. Информацию о совокупности выборочных данных, использованных для построения диаграмм в данной статье, можно найти во врезке «Расчет уровня безработицы».
  • Сезонные колебания. Некоторые значения имеют тенденцию роста или снижения в зависимости от определенных периодов времени, это может быть день недели или месяц в году. Можно рассмотреть пример с продажами в розничных магазинах, пик которых часто приходится на рождественский сезон. В случае с безработицей мы видим сезонный тренд с наивысшими показателями в январе и июле и низкими показателями в мае и октябре, как показано на экране 2.
  • Шум (Noise). Некоторые модели прогнозирования включают четвертую характеристику, шум, или ошибку, которая относится к случайным колебаниям и неравномерным движениям в данных. Шум мы здесь рассматривать не будем.

Таким образом, определяя тренд, накладывая линию тренда на базовый уровень и выявляя сезонную составляющую, которая может иметь место при анализе данных, вы получаете модель прогнозирования, которую можно задействовать для составления прогноза значений:

Прогнозируемое значение = Базовый уровень + Тренд + Сезонная составляющая

Определение базового уровня и тренда

Единственный способ определить базовое значение и тренд – это воспользоваться методом регрессии. Под словом «регрессия» здесь понимается рассмотрение взаимосвязи между переменными. В данном случае существует взаимосвязь между независимой переменной времени и зависимой переменной числа безработных. Обратите внимание, что независимая переменная иногда называется прогнозирующим параметром.

Воспользуйтесь таким инструментом, как Microsoft Excel, чтобы применить метод регрессии. Например, вы можете выполнить автоматический подсчет в Excel и добавить линию тренда к графику временных рядов, используя меню Trendline на вкладке Chart Tools Layout или вкладке PivotChart Tools Layout в панели Excel 2010 или Excel 2007. На экране 1 я добавил прямую линию тренда, выбрав режим Linear trendline в меню Trendline. Затем я выбрал More Trendline Options в меню Trendline, а потом – параметры Display Equation on chart («Показывать уравнение на диаграмме») и Display R-squared value on chart («Показывать на диаграмме значение коэффициента детерминации»), см. экран 3.

Экран 3. Параметры тренда в Excel

Этот процесс подгонки линии тренда к накопленным данным называется линейной регрессией (linear regression). Как мы видим на экране 1, линия тренда рассчитывается в соответствии с уравнением, где определяется базовый уровень (8248,8) и тренд (104.67x):

y = 104,67x + 8248,8

Можно представить себе линию тренда как ряд связанных координат осей x-y, куда вы можете включить промежуток времени (то есть ось x) для получения значения (ось y). Excel определяет «лучшую» линию тренда, применяя метод наименьших квадратов (определяемый как R² на экране 1). Линия наименьших квадратов – это линия, которая минимизирует возведенное в квадрат расстояние по вертикали из каждой точки линии тренда к соответствующей точке линии. Среднеквадратические значения позволяют определить, что отклонения выше или ниже актуальной линии не уравновешивают друг друга. На экране 1 мы видим, что R² = 0,5039, то есть линейное соотношение объясняет 50,39 % изменений в статистике безработицы с течением времени.

Определение точной линии тренда в Excel часто включает в себя метод проб и ошибок, наряду с визуальным контролем. На экране 1 прямая линия тренда подходит не самым лучшим образом. Excel предлагает другие варианты линии тренда, которые вы видите на экране 3. На экране 4 я добавил линию скользящей средней за четыре периода, которая строится на основе среднего арифметического показателей текущего и последних установленных периодов временного ряда.

Кроме того, я добавил полиномиальную линию тренда, применив алгебраическое уравнение для построения линии. Заметьте, что полиномиальная линия тренда имеет значение R² - 0,9318, определяющее наилучшее соотношение в выражении связи между независимой и зависимой переменными. Однако более высокое значение R² не обязательно означает, что линия тренда обеспечит качество прогнозной оценки. Существуют другие методы расчета точных прогнозов, которые я вкратце опишу ниже. Некоторые варианты линии тренда в Excel (например, линейная, полиномиальная линии тренда) позволяют делать прогнозы вперед, а также в обратном направлении, с учетом количества периодов, с нанесением полученных значений на график. Кому-то может показаться странным выражение «прогноз в обратном направлении». Лучше всего представить это на примере. Предположим, что новый фактор - быстрое увеличение рабочих мест в государственном секторе (например, рабочие места в Homeland Defense в начале 2000-х годов, временные работники Бюро переписи населения США) - послужил причиной быстрого падения уровня безработицы. Вам нужно сделать прогноз темпов роста нового сектора рабочих мест в обратном направлении в течение нескольких месяцев, а затем пересчитать уровень безработицы, чтобы прийти к сглаженному показателю изменения.

Вы также можете вручную применить уравнение линии тренда для расчета значений на перспективу. На экране 5 я добавил полиномиальную линию тренда с прогнозом на 6 месяцев, сперва убрав данные за последние 6 месяцев (то есть с апреля по сентябрь 2012 года) из исходного временного ряда.

Если сравнить экран 5 с экраном 1, можно заметить, что полиномиальные прогнозы обладают тенденцией роста, что не соответствует нисходящей тенденции (тренду) фактического временного ряда.

Относительно регрессии важно сделать два замечания.

  • Как уже упоминалось выше, линейная регрессия включает одну независимую и одну зависимую переменную. Для понимания того, как дополнительные независимые переменные могут объяснить изменения в зависимой переменной, попробуйте построить модель множественной регрессии. В контексте прогнозирования числа безработных в Соединенных Штатах вы можете увеличить R² (и точность прогноза), учитывая коэффициент роста экономики, населения США, а также рост числа нанятых работников. SSAS может вместить множество переменных (то есть регрессоров) в модель прогнозирования временных рядов.
  • Алгоритмы прогнозирования временных рядов, включая те, что используются в SSAS, позволяют вычислить автокорреляцию, которая является корреляцией между соседними значениями временного ряда. Модель прогнозирования, которая непосредственно включает автокорреляцию, называется авторегрессивной (AR) моделью. Например, модель линейной регрессии выстраивает уравнение тренда на основе периода (например, 104,67 * x), в то время как в AR модели уравнение строится, исходя из предыдущих значений (например, -0,417 * безработных (-1) + 0,549 * занятых (-1)). AR модель потенциально увеличивает точность прогноза, так как учитывает дополнительную информацию сверх тренда и сезонной компоненты.

Учитываем сезонную составляющую

Сезонная компонента в структуре временного ряда обычно проявляется в связи либо с днем недели, либо с днем месяца, или же с месяцем в году. Как отмечалось выше, число безработных в США обычно растет и сокращается в установленный календарный год. Это верно даже при росте экономики, как показано на экране 2. Иными словами, чтобы сделать точный прогноз, вы должны учесть сезонную составляющую. Один общий подход заключается в применении метода сглаживания сезонных колебаний. В работе Practical Time Series Forecasting: A Hands-On Guide, Second Edition (CreateSpace Independent Publishing Platform, 2012) автор Галит Шмуели рекомендует использовать один из трех методов:

  • вычисление скользящего среднего;
  • анализ временного ряда на менее детализированном уровне (например, рассмотрите изменения числа безработных поквартально, а не по месяцам);
  • анализ отдельных временных рядов (и расчет прогнозов) по сезону.

Базовый уровень и тренд определяются при расчете прогноза с учетом сглаженного временного ряда. Факультативно сезонная составляющая или корректировка могут вновь применяться к прогнозируемым значениям с учетом начальных значений сезонного фактора при работе с методом Хольта-Винтерса. Если вы хотите увидеть, как производятся расчеты с учетом фактора сезонности в Excel, введите в строке поиска в Интернете «метод Винтерса в Excel». Также развернутое объяснение метода Хольта-Винтерса можно найти в руководстве Wayne L. Winston Microsoft Office Excel 2007: Data Analysis and Business Modeling, Second Edition (Microsoft Press, 2007).

Во многих пакетах интеллектуального анализа данных, таких, как SSAS, в алгоритмах прогнозирования временных рядов автоматически учитываются сезонные колебания путем измерения сезонных соотношений и включения их в модель прогнозирования. Тем не менее, возможно, вы захотите установить подсказки о структуре сезонных изменений.

Точность измерений модели прогнозирования

Как уже говорилось, исходная модель (если применять метод наименьших квадратов) не обязательно обеспечивает точность прогнозов. Самый лучший способ проверки точности прогнозных оценок – это разделить временной ряд на два набора данных: один для построения (то есть тренировки) модели и другой – для валидации. Набор данных для валидации будет являться наиболее «свежей» частью в наборе исходных данных, и он идеально охватывает время, равное временной шкале прогноза на будущее. Для проверки (валидации) модели предсказанные значения сравниваются с фактическими значениями. Обратите внимание, что после того, как вы произвели валидацию, модель может быть перестроена с использованием всего временного ряда, так что для прогнозирования будущих значений показателей желательно задействовать новейшие фактические значения.

Когда измеряется точность модели прогнозирования, как правило, возникает два вопроса: как определить точность прогнозной оценки и сколько исторических данных использовать для тренировки модели.

Как определить точность прогнозной оценки? В некоторых сценариях значения, прогнозируемые выше фактических значений, могут быть нежелательны (например, в прогнозах относительно инвестиционной деятельности). В других ситуациях значения, прогнозируемые ниже фактических, могут иметь разрушительные последствия (например, прогнозирование минимальной из выигрышных цен пункта аукциона). Но в случаях, когда вы хотите рассчитать оценку для всех прогнозов (неважно, выше или ниже реальных значений оказываются прогнозные значения), вы можете начать с количественной ошибки в отдельном прогнозе, используя определение:

ошибка = прогнозируемое значение – фактическое значение

При таком определении ошибки есть два популярнейших метода для измерения точности: это средняя абсолютная ошибка, то есть mean absolute error (MAE) и средняя абсолютная ошибка в процентах, или mean absolute percentage error (MAPE). В методе MAE абсолютные значения ошибок прогнозирования суммируются, а затем делятся на общее число прогнозов. Методом MAPE рассчитывается среднее абсолютное отклонение от прогноза в процентах. Для просмотра примеров работы с этими и другими методами для измерения качества прогнозных оценок шаблон Excel (с образцом данных прогнозирования и коэффициентами точности) откройте веб-страницу Demand Metrics Diagnostics Template (demandplanning.net/DemandMetricsExcelTemp.htm).

Сколько исторических данных следует использовать для тренировки модели? Работая с временным рядом, история которого уходит далеко в прошлое, вы можете захотеть включить в модель все исторические данные. Однако подчас дополнительная история не повышает точность прогнозирования. Давние данные могут даже исказить прогноз, если условия в прошлом существенно отличаются от условий в настоящем (например, состав рабочей силы сейчас и в прошлом различен). Мне не попадалась какая-то особая формула или практический метод, которые подсказали бы, какое количество исторических данных необходимо включить, поэтому я предлагаю начать с временных рядов, которые в несколько раз больше, чем временные интервалы прогноза, а затем проверить точность. Далее, попробуйте округлить число истории вверх или вниз и проведите тест повторно.

Прогнозирование временных рядов в SSAS

Прогнозирование временных рядов впервые появилось в SSAS в 2005 году. Для вычисления прогнозных значений алгоритм временных рядов Microsoft (Microsoft Time Series) использовался единый алгоритм под названием autoregressive tree with cross prediction (ARTXP), или дерево с авторегрессией с перекрестным прогнозированием. ARTXP сочетает метод авторегрессии с интеллектуальным анализом данных decision tree (дерево решений), так что уравнение прогноза может измениться (имеется в виду разделение) на основе определенных критериев. Например, модель прогнозирования обеспечит лучшее соответствие (и большую точность прогноза), если сначала предпринять разделение по дате, а затем на основе значения независимой переменной, как показано на экране 6.


Экран 6. Пример дерева решения ARTXP в SSAS

В SSAS 2008 в алгоритме Microsoft Time Series в дополнение к ARTXP начал использоваться алгоритм под названием autoregressive integrated moving average (ARIMA), интегрированное скользящее среднее с авторегрессией, для вычисления долгосрочных прогнозов. ARIMA считается отраслевым стандартом и может рассматриваться как сочетание процессов авторегрессии и моделей скользящего среднего. Кроме того, он анализирует исторические ошибки прогнозирования для улучшения модели.

По умолчанию алгоритм Microsoft Time Series сочетает результаты алгоритмов ARIMA и ARTXP для достижения оптимальных прогнозов. По желанию вы можете отменить данную функцию. Обратимся к документации SQL Server Books Online (BOL):

«Алгоритм тренирует две различные модели одних и тех же данных: одна модель использует алгоритм ARTXP, а другая – алгоритм ARIMA. Затем алгоритм объединяет результаты двух моделей, чтобы разработать наилучший прогноз, охватывающий переменное число временных срезов. Поскольку алгоритм ARTXP больше подходит для краткосрочных прогнозов, им желательно воспользоваться в начале ряда прогнозов. Однако если временные срезы, необходимые для прогнозирования, уходят в будущее, алгоритм ARIMA более значим».

При работе с прогнозированием временных рядов в SSAS вы должны постоянно иметь в виду следующее:

  • Хотя в SSAS есть закладка Mining Accuracy Chart, она не работает с интеллектуальным анализом данных для моделей временных рядов. В результате вам следует вручную измерять точность с помощью одного из методов, упомянутых здесь (например, MAE, MAPE), используя для расчетов такой инструмент, как Excel.
  • Редакция SSAS Enterprise Edition позволяет разделить один временной ряд на множество «исторических моделей», так что вам не нужно будет вручную разделять данные на наборы данных для тренировки модели и валидации, проверяя точность прогноза. С точки зрения конечного пользователя, есть только одна модель временных рядов, но вы можете сравнить фактические результаты с прогнозируемыми в рамках модели, как показано на экране 7. Если вы не работаете с редакцией Enterprise Edition или не хотите использовать эту функцию, прежде всего вручную разделите данные.

Следующий шаг

В этой статье я познакомил вас с основами прогнозирования временных рядов. Мы также рассмотрели некоторые детали базовых алгоритмов, чтобы они не стали препятствием в обработке временных рядов. В качестве следующего шага я предлагаю вам освоить инструменты прогнозирования временных рядов с SSAS. Образцом может послужить проект, в котором используются данные по безработице, приведенные в данной статье. Затем вы можете ознакомиться с электронным учебным пособием TechNet «Intermediate Data Mining Tutorial (Analysis Services – Data Mining)» (Промежуточные итоги интеллектуального анализа данных (Analysis Services – интеллектуальный анализ данных)) по адресу technet.microsoft.com/en-us/library/cc879271.aspx.

Почему интеллектуальный анализ данных так непопулярен

В последнее десятилетие начали широко применяться технологии бизнес-аналитики business intelligence (BI), такие, как OLAP. В то же время Microsoft занялась продвижением другой BI–технологии, интеллектуального анализа данных, в таких популярных инструментах, как Microsoft SQL Server и Microsoft Excel. Однако технология интеллектуального анализа данных пока не стала ведущей. Почему? Хотя большинство людей может быстро ухватить суть ключевых понятий интеллектуального анализа данных, основные детали алгоритмов неразрывно связаны с математическими понятиями и формулами. Существует большое «расхождение» между высоким уровнем абстрактного понимания и детальным исполнением. В результате интеллектуальный анализ данных рассматривается ИТ-специалистами и промышленными клиентами как «черный ящик», что не способствует широкому внедрению технологии. Данная статья – моя попытка уменьшить «расхождение» в прогнозировании временных рядов.

Расчет уровня безработицы

В основной статье данные для графиков взяты с учетом информации о работающем населении, опубликованной U.S. Bureau of Labor Statistics (http://www.bls.gov/). BLS публикует сведения об уровне безработицы на основании ежемесячного опроса, проводимого Бюро переписи населения США (BLS), экстраполирующего общее число работающих и безработных. В частности, BLS применяет формулу:

Уровень безработицы = безработные/(безработные + работающие)

Примечательно, что, когда речь заходит об уровне безработицы, средства массовой информации обычно приводят выровненный коэффициент сезонности. Сезонная корректировка осуществляется с помощью общей модели, которая называется авторегрессионным проинтегрированным скользящим средним – autoregressive integrated moving average (ARIMA). По сути, это тот же алгоритм, что используется во многих пакетах глубинного анализа данных для прогнозирования временных рядов, включая SQL Server Analysis Services (SSAS). Чтобы получить более подробную информацию о модели ARIMA, используемой BLS, зайдите на веб-страницу X-12-ARIMA Seasonal Adjustment Program (www.census.gov/srd/www/x12a/). Обратите внимание, что в типовом проекте для данной статьи я использовал скорректированные значения сезонных и несезонных колебаний.





Похожие статьи