Простые и сложные процентные ставки. Сложные проценты в MS EXCEL. Постоянная ставка

Стоит задача выбора наилучшего банка и наиболее выгодного типа счета. И если с банками более-менее все понятно - можно сориентироваться по многочисленным рейтингам и выбрать то отделение, которое недалеко расположено от места проживания, то с выбором типа счета дело обстоит куда сложней. Ведь помимо величины процента нужно учитывать еще возможность пополнения депозита, досрочного снятия, способ начисления процентов и прочие факторы. Помимо размера самого процента большое значение имеет его вид. Рассмотрим подробно, чем отличаются между собой простой и сложный процент.

Простой процент. Формула расчета

С все предельно ясно, ведь его изучают еще в школе. Единственное, что нужно помнить, это то, что ставка всегда указывается за годовой период. Непосредственно сама формула имеет такой вид:

КС = НС + НС*i*п = НС*(1 + i*п), где

НС - начальная сумма,

КС - конечная сумма,

i - величина Для депозита сроком на 9 мес и ставкой 10%, i =0,1*9/12 = 0,075 или 7,5%,

п - число периодов начисления.

Рассмотрим несколько примеров:

1. Вкладчик размещает 50 тыс. рублей на срочном депозите, под 6% годовых на 4 месяца.

КС = 50000*(1+0,06*4/12) = 51000,00 р.

2. 80 тыс. рублей, под 12% годовых на 1,5 года. При этом проценты ежеквартально выплачиваются на карточку (к депозиту не присоединяются).

КС = 80000*(1+0,12*1,5) = 94400,00 р. (поскольку ежеквартальная выплата процентов не прибавляется к сумме депозита, то на конечную сумму это обстоятельство не влияет)

3. Вкладчик решил положить 50000 рублей на срочный вклад, под 8% годовых на 12 месяцев. Разрешено пополнение депозита и на 91 день было сделано пополнение счета в сумме 30000 рублей.

КС1 = 50000*(1+0,08*12/12) = 54000 р.

КС2 = 30000*(1+0,08*9/12) = 31800 р.

КС = КС1+КС2 = 54000 + 31800 = 85800 р.

Сложный процент. Формула расчета

Если в условиях размещения вклада указано, что возможна капитализация или реинвестирование, то это говорит о том, что в этом случае будет использован сложный процент, расчет которого выполняется по такой формуле:

КС = (1 + i) n *НС

Обозначения такие же, как и в формуле для простого процента.

Бывает так, что проценты выплачиваются чаще, чем один раз в год. В этом случае сложный немного по-другому:

КС = (1 + i/к) nk *НС, где

к - частота накоплений в год.

Вернемся к нашему примеру, в котором банк принял срочный депозит в 80 тыс. рублей, под 12% годовых на 1,5 года. Допустим, что проценты также выплачиваются ежеквартально, но на этот раз они будут прибавляться к телу вклада. То есть, наш депозит будет с капитализацией.

КС = (1+0,12/4) 4*1,5 *800000 = 95524,18 р.

Как вы уже успели, наверное, заметить, полученный результат оказался на 1124,18 рублей больше.

Преимущество сложных процентов

Сложный процент по сравнению с простым всегда приносит больше прибыли, причем эта разница со временем увеличивается все быстрее и быстрее. Этот механизм способен превратить любой стартовый капитал в сверхприбыльную машину, стоит лишь дать ему достаточное время. В свое время Альберт Эйнштейн назвал сложный процент самой мощной силой в природе. По сравнению с другими видами инвестиций такой имеет значительные преимущества, особенно когда инвестор выбирает долгосрочный период. По сравнению с акциями, сложный процент имеет намного меньший риск, а стабильные облигации дают меньший доход. Конечно, любой банк может со временем разориться (всякое случается), но выбирая банковское учреждение, которое участвует в государственной программе страхования депозитов, можно свести к минимуму и этот риск.

Таким образом, можно утверждать, что сложный процент имеет намного большие перспективы по сравнению с практически любым финансовым инструментом.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, иногда называют капитализацией процентов.

Формулы наращения 1) Формула наращения по сложным процентам Пусть первоначальная сумма долга равна Р, тогда через один год сумма долга с присоединенными процентами составит Р(1+i), через 2 года - Р (1+i) = Р (1+i 2) через n лет - Р (1+i)n. Таким образом, получаем формулу наращения для сложных процентов. S = P (1+i) n где S - наращенная сумма; i - годовая ставка сложных процентов; n - срок ссуды; (1 + i)n - множитель наращения. В практических расчетах в большинстве случаях применяют дискретные проценты, т. е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т. д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен Р, а знаменатель (1+i). Наращенные суммы по формулам простых и сложных процентов (множители наращения, соответственно, (1 + ni) и (1 + i) n) различаются между собой даже при условии одинакового периода начисления и одинаковой процентной ставки. Покажем это на примере.

Пример 9. Исходная сумма кредита 100 000 ден. ед. Ставка 30 % годовых. Определить наращенную сумму по простым и сложным процентам за 0, 5 года, 1 год и 2 года. Решение. S 1 = 100000 · (1 + 0, 5 · 0, 3) = 115000 ден. ед. S 2 = 100000 · (1 + 1 · 0, 3) = 130000 ден. ед. S 3 = 100000 · (1 + 2 · 0, 3) = 160000 ден. ед. S 4 = 100000 · (1 + 0, 3) 1/2 = 114017 ден. ед. S 5 = 100000 · (1 + 0, 3) 1 = 130000 ден. ед. S 6 = 100000 · (1 + 0, 3) 2 = 169000 ден. ед. Результаты расчетов запишем в таблицу. Проценты Период начисления суммы 0, 5 года 1 год 2 года Простые 115000 ден. ед. 130000 ден. ед. 160000 ден. ед. Сложные 114017 ден. ед. 130000 ден. ед. 169000 ден. ед.

Обобщая полученные результаты расчетов, можно сделать следующие выводы: 1) при периоде менее года простые проценты более выгодны кредитору, банку; 2) при периоде в 1 год использование простых и сложных процентов приводит к равным результатам; 3) при периоде более года использование сложных процентов приводит к более интенсивному росту наращенной суммы, т. е. выгоднее кредитору, банку.

2) Формула наращения по сложным процентам при изменении ставки во времени. В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид S = P (1 + i 1) n 1 (1 + i 2) n 2 … (1 + ik)k где i 1, i 2. . . , ik - последовательные значения ставок процентов, действующих в периоды n 1, n 2. . . , nk соответственно. Пример 10. В договоре зафиксирована переменная ставка сложных процентов, определяемая как 15 % годовых, плюс маржа 6 % в первые два года, 8 % - в третий год, 10% -в четвертый год. Определить величину множителя наращения за 4 года. Решение. (1 + 0, 21) 2 (1 + 0, 23) (1 + 0, 25) = 1, 83

3) Формулы удвоения суммы. В целях оценки своих перспектив кредитору и должнику интересно знать, через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Для этого приравняем множитель наращения величине N, в результате получим: а) для простых процентов (1 + niпр) = N, тогда n = (N – 1) / iпр б) для сложных процентов (1 + iсл)n = N, тогда n = ln. N/ln(1 + icл) Эти две формулы называются формулами удвоения и принимают следующий вид: а) для простых процентов n = 1/iпр б) для сложных процентов n = ln 2/ln (1 + iсл) При небольших ставках процентов (менее 10%) вместо формулы n = ln 2/ln (1 + iсл) можно использовать более простую приближенную, если учесть, что ln 2 ˜ 0, 7, а ln (1 + i) ~ i. Тогда n ~ 0, 7/i

Пример 11. Рассчитать, за сколько лет долг увеличится вдвое при ставке простых и сложных процентов, равной 3 %. Для ставки сложных процентов расчеты выполнить по точной и приближенной формулам. Результаты сравнить. Решение. а) Для случая простых процентов n = 1/iпр = 1/0, 03 = 33, 33 лет б) при сложных процентах, вычисленных по точной формуле, n = ln 2/ln (1 + iсл) = 0, 6931 ln (1 + 0, 03) = 23, 45 в) при сложных процентах, вычисленных по приближенной формуле: n ~ 0, 7/i ~ 0, 7/0, 03 ~ 23, 33 лет Таким образом, одинаковое значение ставок простых и сложных процентов приводит к различным результатам, при малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

4) Начисление годовых процентов при дробном числе лет При дробном числе лет проценты начисляются разными способами: 1) по формуле сложных процентов S = P (1 + i) n 2) на основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые, S = P (1 + i) a (1 + bi) где n = а + b, а - целое число лет, b - дробная часть года; 3) в ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т. е. S = P (1 + i) a

Номинальная и эффективная ставки процентов 1) Номинальная ставка Пусть годовая ставка сложных процентов равна j, а число периодов начисления в году т. Тогда каждый раз проценты начисляют по ставке j/m. Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле S = P (1 + j/m) N где N - число периодов начисления, М= mn. Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам: 1) по формуле сложных процентов S = P (1 + j/m) N/r где N/r- число периодов начисления процентов, r - период начисления процентов; 2) по смешанной формуле S = P (l + j/m) a (l + bj/m) где а - целое число периодов начисления, т. е. а = - целая часть от деления всего срока ссуды N на период начисления r, b - оставшаяся дробная часть периода начисления (b = N/r - а).

Пример 12. Размер ссуды, предоставленной на 28 месяцев, равен 20 млн. ден. ед. Номинальная ставка равна 60 % годовых; начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: на дробную часть начисляются сложные проценты; на дробную часть начисляются простые проценты; дробная часть не учитывается. Результаты расчетов сравнить. Решение. Всего 28/3 периодов начисления, т. е. 9 кварталов и 1 мес. : 1) S = 20 (1 + 0, 6/4)28/3 = 73, 713 млн. ден. ед. ; 2) S = 20 (1 + 0, 6/4)9 (1 + 0, 6/4 1/3) = 73, 875 млн. ден. ед. ; 3) S = 20 (l + 0, 6/4)9 = 70, 358 млн. ден. ед. Из полученных результатов расчета следует, что наибольшего значения наращенная сумма достигает во втором случае, т. е. при начислении на дробную часть простых процентов. Таким образом, для ссудодателя выгоднее второй вариант, так как итоговая сумма получается максимальной, а для заемщика предпочтительнее третий вариант, так как итоговая сумма минимальна.

2) Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m-разовое наращение в год по ставке j/m. Если проценты капитализируются т раз в год, каждый раз со ставкой j/m, то можно записать равенство для соответствующих множителей наращения: (1 + iэ) n = (1 + j/m) mn где iэ - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением iэ = (1 + j/m) m – 1 Обратная зависимость имеет вид j = m [(1 + iэ) 1/m – 1] Пример 13. Банк начисляет сложные проценты на вклад, исходя из годовой номинальной ставки 0, 12. Вычислить эффективную годовую процентную ставку при ежемесячной и ежеквартальной капитализации процентов. Решение. По формуле iэ = (1 + j/m) m – 1 получаем: Iэ = (1 + j/m) m – 1 = (1 + 0, 12/12) 12 – 1 = 1, 192 – 1 = 0, 192 Iэ = (1 + j/m) m – 1 = (1 + 0, 12/4) 4 – 1 = 1, 1255 – 1 = 0, 1255

Пример 14. Определить, какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12 % годовых. Решение. Использование формулы j = m [(1 + iэ) 1/m – 1 дает: j = m [(1 + iэ) 1/m – 1] = 4 [(1 + 0, 12) 1/4 – 1] = 0, 115 3) Учет (дисконтирование) по сложной ставке процентов Как и в случае простых процентов, рассмотрим два вида учета - математический и банковский. Математический учет. В этом случае решается задача, обратная наращению по сложным процентам. Запишем исходную формулу для наращения: S = P (1 + i) n из нее найдем Р: P = S/(1 + i) n = Su n Где u n = 1/(1 + i) n = (1 + i) -n - учетный, или дисконтный, множитель.

Если проценты начисляются т раз в году, то P = S/(1 + j/m) mn = Su mn Где u mn = 1/(1 + j/m) mn = (1 + j/m) –mn - дисконтный множитель. Величину Р, полученную дисконтированием S, называют современной или текущей стоимостью или приведенной величиной S. Дисконтный множитель показывает, во сколько раз первоначальная сумма меньше наращенной. Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле P = S (1 – dсл) n где dсл - сложная годовая учетная ставка. Дисконт определяется как D = S – P = S – S (1 - dсл) = S При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

4) Номинальная учетная ставка процентов В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f. Тогда в каждом периоде, равном 1/m части года, дисконтирование осуществляется по сложной учетной ставке f/m. Процесс дисконтирования по этой сложной учетной ставке описывается формулой P = S (1 – f/m) N где N=тn - общее число периодов дисконтирования. Дисконтирование не один, а m раз в году быстрее снижает величину дисконта. 5) Эффективная учетная ставка Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе т дисконтирований в году. В соответствии с определением эффективной учетной ставки, найдем ее связь с номинальной из равенства дисконтных множителей: (1 – f/m) mn = (1 – dcл) n из которого следует, что dсл = 1 – (1 – f/m) m Отметим, что эффективная учетная ставка всегда меньше номинальной.

6) Наращение по сложной учетной ставке Наращение является обратной задачей для расчета учетных ставок. Формулы наращения по сложным учетным ставкам можно получить из формул дисконтирования P = S (1 – dсл) n и P = S (1 – f/m) N. Получаем: S = P/(1 – dсл) n S = P/(1 - f/m) N Пример 15. Рассчитать, какую сумму следует проставить в векселе, если реально выданная сумма равна 200 000 ден. ед. , срок погашения 2 года. Сумма векселя рассчитывается, исходя из сложной годовой учетной ставки 10 %. Решение. По формуле S = P/(1 – dсл) n получаем: S = 200000/(1 – 0, 1) 2 = 246913, 58 ден. ед. Пример 16. Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год. Решение. Подстановка в формулу S = P/(1 - f/m) N значений т = 4 и N = 4 2 дает: S = 200000/(1 – 0, 1/4) 8 = 244902, 42 ден. ед.

Непрерывные проценты 1) Наращение и дисконтирование Наращенная сумма при дискретных процентах, как было показано, определяется по формуле S = P (1 + j/m) mn где j - номинальная ставка процентов, m - число периодов начисления процентов в году. Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m ∞ имеем Используя второй замечательный предел получаем: 1 2 Используя этот предел в выражении (1), получаем, что формула наращенной суммы в случае непрерывного начисления процентов по ставке j имеет вид S = Pe in

Для того чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают б: S = Pe бn Сила роста представляет собой номинальную ставку процентов при т ∞. Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле P = Se –бn 2)Cвязь дискретных и непрерывных процентных ставок Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить, приравнивая соответствующие множители наращения: (1+ i) n = e бn Из этого равенства следует, что б = ln(1+ i) i = еб – 1

(возьмем для примера сложную ставку ссудного процента), под которую могут быть вложены деньги, суммы 5j и 52 имеют различные современные величины PJ и />2  

Капитал, взятый в кредит, вложен под сложную ставку ссудного процента 22% годовых. Для расчета с кредиторами необходимо выплатить 30 000 000 через два года или 36 000 000 через три года. Какой вариант предпочтителен  

Кредит в размере 50 000 000 руб. выдан на два года. Реальная доходность операции должна составить 10% годовых по сложной ставке ссудного процента. Ожидаемый уровень инфляции составляет 15% в год. Определить множитель наращения, сложную ставку процентов , учитывающую инфляцию, и наращенную сумму.  

Пример 2. Определить величину первоначальной суммы, необходимой для получения через 10 лет капитала в 500 000 000 руб. если используется сложная ставка ссудного процента 12% годовых.  

Поскольку в финансовом управлении рассматриваются вопросы, связанные с принятием решений , касающихся денег, а ценой денег является ссудный процент , при разработке большей части решений по финансированию учитывают ставку ссудного процента . В этой главе рассматривается математическая сторона определения сложных процентов и текущей стоимости . Из гл. 1 мы знаем, что задача дирекции - увеличение капитала акционеров, и выполнение этой задачи частично зависит от распределения во времени потоков денежной наличности. Следовательно, одним из важнейших направлений деятельности является оценка потоков движения денежной наличности. Действительно, многие выводы, приведенные в этой книге, сделаны в зависимости от поднимаемых вопросов. Несмотря на то, что дискуссия имеет математическую основу, в изложении вопросов внимание уделяется лишь нескольким формулам, поэтому суть не теряется в частностях. В примерах нередко используется возведение в степень, что легко выполнить на калькуляторе.  

Если депозит двухгодичный, первоначальные 100 дол. в конце первого года превратятся в 108 дол. при ставке ссудного процента 8 годовых. По окончании второго года 108 дол. становятся 116,64 дол., т. е. добавляются еще 8 дол. как проценты по основной сумме и 0,64 дол. как проценты на проценты за первый год. Другими словами, набегают проценты по уже полученным процентам, отсюда название "сложные проценты ". Следовательно, конечная стоимость на конец второго года равна 100 дол. умножить на 1,08 в квадрате (или 1,1664).  

Несмотря на то что мы рассматривали только ставку ссудного процента , этот подход применим при сложном росте любого рода. Предположим, депозит фирмы равен 100 000 дол., мы ожидаем прирост этой суммы в течение пяти лет по ставке 10% годовых  

Исходя из того, что в нашей стране только осуществляется переход к рыночной экономике , финансово-кредитный механизм еще не отработан в должной мере по сравнению с его состоянием в странах с развитой рыночной экономикой . Представляется, что сегодня сложно учесть такие факторы, как налоговая политика , спрос на заемные средства , изменение показателей валового национального продукта , инфляционные процессы , состояние бюджета страны, возросшая самостоятельность банков. В отечественной практике также не отработан механизм действия двух видов процентных ставок - фиксированной за весь срок предоставления кредитов и плавающей, которая пересматривается через определенные промежутки времени в связи с изменением рыночных и валютных курсов , а также кредитоспособности должника. Поэтому в дальнейшем принимаем фиксированную ставку ссудного процента.  

В рассмотренной упрощенной модели денежного предложения не учитывался ряд факторов, которые в значительной мере определяют количество денег, находящихся в обращении. Так, не принималось во внимание соотношение между наличными деньгами и депозитами. Каждый экономический субъект самостоятельно решает, какую часть денег сохранять в виде наличности, а какую - положить в банк. На его выбор оказывает влияние ряд факторов. Во-первых, чем выше доля потребления в ВВП, тем большую часть денег население будет держать на руках. Во-вторых, объем наличных денег зависит от ставки ссудного процента , ибо хранение наличности "лишает" их владельцев дохода. Поэтому, чем выше ставка ссудного процента , тем меньше наличных денег будет у экономических субъектов . В-третьих, объем наличности зависит и от того, насколько легко или сложно изъять их из банка, т.е. от трансакционных издержек изъятия. Так как СU - наличные деньги , a D - депозиты, то отношение наличности к депозитам сd будет равно  

По ссудам с погашением в рассрочку банки и другие кредиторы обычно устанавливают проценты на базе сложения. Это означает, что процент прибавляют к сумме выплат средств для того, чтобы определить номинальную стоимость векселя. Предположим, что в нашем примере ссуда с погашением в рассрочку предоставлялась на условиях 12 равных ежемесячных выплат, а ссудный процент составил 12%. Заемщик получил 10 000 дол., а номинал векселя, следовательно, равен 11 200 дол. Таким образом, 1200 дол. и идут на выплату процентов. Однако заемщик использует все 10 000 дол. только в первый месяц, в конце этого месяца он должен выплатить 1/12 часть от 11 200 дол., т. е. 933,33 дол. Выплаты на такую же сумму производятся в конце каждого из последующих 11 месяцев до тех пор, пока вексель не будет полностью погашен. На протяжении всего года заемщик использует только около половины первоначальной суммы в 10 000 дол. По сравнению с 12% эффективная ставка процента почти удваивается, что составляет около 22% с учетом сложных процентов . Таким образом, данный ссудный процент выплачивается на основе исходной суммы займа, а не уменьшающегося остатка, что обычно происходит в случаях с другими типами ссуд.  

ПРИМЕР 14.7. Поданным примера 14.1 (варианта) при условии, что сложная ставка, которая характеризует средний уровень ссудного процента на рынке, равна, допустим, 15% годовых, что соответствует ставке за полугодие q = 1,1 51/2 - 1 = 0,07238, или 7,238%. Величины Vt приведены в табл. 14.1 значение z = = 0,994375 найдено в примере 14.2. Получим  

Процент за кредит отражает сложные экономические отношения , которые возникают в процессе обращения ссудных капиталов на рынке. Величина получаемого дохода (процентов) определяется исходя из величины вкладываемого капитала, срока, на который он предоставляется в долг или инвестируется, размера и вида процентной ставки (ставки доходности).  

Следовательно, руководство фирмы должно располагать информацией о стоимости капитала , т.е. о ставке процента на заемный и ссудный капитал , с тем, чтобы принимать грамотные управленческие решения по инвестиционным проектам . На практике нахождение внутренней нормы прибыли требует сложных расчетов.  

Ссудные операции. Доходность ссудных операций (без учета комиссионных) измеряется с помощью эквивалентной годовой ставки сложных процентов (см. 4.2). За открытие кредита, учет векселей и другие операции кредитор часто взимает комиссионные, которые заметно повышают доходность операций, так как сумма фактически выданной ссуды сокращается.  

ПРИМЕР 10.1. При выдаче ссуды на 180 дней под 8% годовых кредитором удержаны комиссионные в размере 0,5% суммы кредита. Какова эффективность ссудной операции в виде годовой ставки сложных процентов По формуле (10.2) находим  

Неэффективность системы финансирования НИОКР, созданной в рамках существующих государственных программ , низкая инвестиционная активность


Сущность процентных платежей. Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.

Процентная ставка характеризует доходность кредитной сделки. Она показывает, какая доля выданного кредита будет возвращена владельцу капитала в виде дохода. Поэтому процентная ставка рассчитывается, как отношение дохода, полученного за определенный период (чаще всего за год), к величине капитала, предоставляемого в кредит. Величина процентной ставки определяется отношением:

Здесь i (%) - процентная ставка, выраженная в процентах.

Величину I часто называют процентными деньгами или процентным доходом, а иногда просто процентами.

В большинстве случаев начисление процентов производится с помощью дискретных процентов, т.е. когда в качестве периодов начисления берутся год, полугодие, квартал, месяц или определенное число дней. В некоторых случаях используется ежедневное начисление.

Существуют различные методы начисления процентов. Основные их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают следующие методы начисления процентов:

по простым процентным ставкам;

по сложным процентным ставкам.

Сущность метода начисления по простым процентам сводится к тому, что проценты начисляются в течение всего срока кредита на одну и ту же величину капитала, предоставляемого в кредит.

Метод начисления по сложным процентам заключается в том, что в первом периоде начисление производится на первоначальную сумму кредита, затем она суммируется с начисленными процентами и в каждом последующем периоде проценты начисляются на уже наращенную сумму. Таким образом, база для начисления процентов постоянно меняется. Иногда этот метод называют «процент на процент».

Другое отличие в методах начисления процентов - это установление процентной ставки в качестве фиксированной или переменной величины . Так, например, в контракте может быть определена процентная ставка на первый год в одном размере, а на последующие годы предусматривается ее рост (снижение) на определенную величину. Кроме того, могут применяться и «плавающие» ставки, величина которых «привязывается» к темпам инфляции или изменяющимся ставкам рефинансирования, объявленным Центральным банком, или же ее изменение оговаривается какими-либо другими условиями. Например, в контракте оговаривается первоначальная процентная ставка (базовая ставка), которой пользуются только один период для начисления процентов (допустим, первый квартал), в дальнейшем она будет расти в соответствии с ростом темпов инфляции.

Вычисление наращенных сумм на основе простых процентных ставок. По условиям кредитного контракта процентные деньги могут выплачиваться кредитору или по мере их начисления в каждом периоде, или совместно с основной суммой долга по истечении срока контракта. В последнем случае сумма, получаемая кредитором называется наращенной суммой. Таким образом, наращенная сумма есть результат сложения суммы, предоставляемой в кредит, и процентных денег.

Формула определения наращенной суммы с использованием простых процентов (формула простых процентов) запишется в следующем виде:

Где S - наращенная сумма.

Выражение (1+n.i) называется множителем наращения процентов.

При использовании простых процентов, когда срок финансовой сделки не равен целому числу лет, периоды начисления процентов выражают дробным числом, т.е. как отношение числа дней функционирования сделки к числу дней в году:

где t - число дней функционирования сделки (число дней, на которое предоставили кредит);

К - временная база (число дней в году).

Тогда формула (2.4.) примет вид:

В ряде стран для удобства вычислений год делится на 12 месяцев, по 30 дней в каждом, т.е. продолжительность года К принимается равной 360 дням. Это германский метод начисления процентов. Проценты, рассчитанные с временной базой К = 360 дней, называются объективными или коммерческими. Существует французский метод , когда продолжительность года принимается равной К = 360 дням, а продолжительность месяцев в днях соответствует календарному исчислению. И наконец, в ряде стран используется английский метод , учитывающий продолжительность года в 365 дней, а продолжительность месяцев - в днях, также соответствующих календарному исчислению, как и при использовании французского метода .

В этой связи различают три метода процентных расчетов, зависимых от выбранного периода начисления.

1.Точные
английский метод ). При этом методе продолжительность года К приниается равной 365(366) дням и определяется фактическое число дней t между двумя датами (датой получения и погашения кредита).

2.Обыкновенные
проценты с точным числом дней ссуды (французский метод ). При этом методе величина t рассчитывается, как и в предыдущем методе.

3.Обыкновенные проценты с приближенным числом дней ссуды (германский метод ).При этом методе величина t определяется количеством месяцев по 30 дней в каждом, начиная с момента выдачи ссуды и до момента ее погашения и точным числом дней ссуды в неполном месяце; продолжительность года К = 360 дней.

При точном и приближенном методах начисления процентов день выдачи и день погашения ссуды принимаются за 1 день.

Между величинами процентного дохода, рассчитанными с использованием различной временной базы (I360 и I365 ), при равной продолжительности ссуды t существуют следующие соотношения:

При установлении переменной процентной ставки, т.е. дискретно изменяющейся во времени ставки, наращенная ставка определяется по формуле:

где it - ставка простых процентов в периоде t ;

nt - продолжительность начисления ставки it ;

m - число периодов начисления процентов.

Выше нами рассматривались методы расчета наращенной суммы, когда она является результатом сложения процентного дохода и капитала, предоставленного в кредит. При этом начисление процентов производилось в конце расчетного периода. Такой метод начисления процентов называется декурсивным
(последующим ).

Наряду с рассмотренным методом начислений существует метод, когда прибавляют к начислению процентов уже наращенные в предыдущем периоде суммы, т.е. происходит многоразовое наращение, именуемое реинвестированием
или капитализацией процентного дохода.

В этом случае итоговая наращенная сумма определяется по формуле:

где n1, n2, nt - продолжительность периодов наращения;

i1, i2, it - процентные ставки, по которым производятся реин – вестирование.

Данный метод начисления процентов (с переменной базой) будет подробно рассмотрен в разделе, посвященном сложным процентам.

Вычисление наращенных сумм на основе простых учетных ставок. Наряду с декурсивным методом существует и другой способ начисления процентов. Суть его сводится к тому, что проценты начисляются в начале расчетного периода, при этом за базу (100 %) принимается сумма погашения долга. В этом случае применяется не процентная, а учетная ставка (d ). Такой метод начисления процентов носит название антисипативный (предварительный ). Расчет наращенной суммы производится по формуле:

Таким образом, мы убедились, что простая учетная ставка дает более быстрый рост наращенной суммы, чем аналогичная по величине ставка простых процентов.

При равенстве простой процентной ставки і и простой учетной ставки d (20%) различие в величине множителей наращения определяется сроком ссуды:

Вид ставки

Срок ссуды в годах - n

Процентные вычисления с использованием дивизора. В мировой финансовой практике наряду с рассмотренными методами процентных вычислений существует и ряд других. В частности, применяется модификация формулы для определения величины процентного дохода:

Для числа дней t процентный доход (платежи) составит:

где произведение P.t называют процентным числом, а частное 36000 / i
или 36500 / i - процентным ключом, или постоянным делителем. В финансовой литературе процентный ключ имеет еще одно наименование - дивизор
(обозначение D ).

Дисконтирование по простым процентным ставкам

Стоимость денег и время. Деньги постоянно меняют свою стоимость. Основной концепцией теории финансов есть то, что одна денежная единица сегодня имеет большую стоимость, чем одна денежная единица завтра, через месяц, год. Инвесторы (люди, которые имеют свободные деньги) дают предпочтение тем деньгам, которые у них сегодня, а не тем, которые будут завтра, потому что они дают им возможность снова из денег делать деньги.

Прежде чем вложить свои деньги в какое-нибудь дело, каждый инвестор должен хорошо определить выигрыш и затраты, которые ждут его в будущем. Таким образом, деньги со временем теряют свою стоимость и не могут быть неподвижными. Основными причинами обесценивания денег есть: инфляция; риск; склонность к ликвидности.

Если годовой теми инфляции (общее повышение цен) 20 %, то соответственно покупательная способность одной денежной единицы снизилась на 20 %, т.е. в начале года за 1 д.е. можно купить 10 единиц какого-то товара, а в конце года за нее можно купить лишь 8 единиц.

Рынок означает неуверенность в будущем. Невозможно точно предвидеть, вернуться ли завтра деньги, вложенные сегодня (из-за инфляции и др.). Поэтому каждая финансовая сделка имеет определенный процент риска. Даже финансовые аналитики, опытные инвесторы, несмотря на их компетентность, не могут гарантировать, что доходы, которые они ожидают от некоторых инвестиций, будут такими в будущем. Чем больший период использования денег, тем больший риск, что соответственно уменьшает ожидаемую стоимость денег.

Склонность к ликвидности денег колеблется. Наиболее ликвидные «живые» деньги. За них можно купить все. Одновременно деньги, вложенные в ценные бумаги, товар и т.д., уже менее ликвидны, т. к. для того, чтобы снова перевести ценные бумаги и товар в деньги, требуется время. Поэтому кредиторы или инвесторы, отдавая свои «живые» деньги, надеются на высокие будущие доходы, чтобы оправдать риск и потерю ликвидности.

Будущая стоимость денег - это наращенная сумма S , т.е. сумма, которую следует уплатить через определенное время n за пользование деньгами P . Стоимость денег сегодня, т.е. на данный момент времени Р0
называется текущей стоимостью.

Таким образом, какая-либо сумма денег имеет три характеристики: начальную стоимость Р0 - стоимость на начало отсчета времени, текущую стоимость Р
- стоимость на какой-либо момент времени, будущую стоимость S - стоимость на конец отсчета времени.

Чтобы начальная сумма Р0 денег не утратила своей стоимости, на нее следует начислить проценты по ставке не меньшей от нормы банковского процента.

В финансовой практике часто приходится решать задачу обратную процессу наращивания, а именно: по известной будущей величине денег, которые следует уплатить за определенное время n , определить начальную сумму Р0 .

Например: клиент хочет через 2 года иметь на счете 20000 д.е. Какую сумму он должен положить сегодня в банк, если он платит 30 % годовых простых. Легко получаем следующий результат:

20000 = P (1+2×0,3) ,

P = 20000/1,6 = 12500 д.е.

Неравноценность денег в разные календарные сроки вызвала к жизни важное понятие дисконтирования. Эта процедура является обратной по отношению к процессу начисления процентов. Дисконтированием называется авансовое удержание с заемщика процентов в момент выдачи ссуды, то есть до наступления срока ее погашения.

Другим вариантом дисконтирования является учет векселей в банке, когда банк принимает вексель от предъявителя, выдает ему обозначенную на векселе сумму до срока его погашения. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока погашения. Подобным образом (с дисконтом) государство продает большинство своих ценных бумаг (долговых обязательств).

Исходной величиной выступает не начальный вклад Р , а некоторая будущая сумма S . Вопрос состоит в том, чтобы определить эквивалентную сумму Р , отстоящую на t
предшествующих периодов до срока выплаты S . В зависимости от принятого критерия эквивалентности можно выделить два подхода к расчету предшествующих сумм.

Во-первых, по размеру вклада Р , который при начислении процентов через t периодов дает сумму S , и, во-вторых, по размеру платежа к которому придем при удержании процентов с финальной суммы S за срок
t . Таким образом, при одном толковании за базовую величину, то есть за 100 %, принимается размер вклада Р , в то время как при другой - за 100 % берется будущая сумма S . Кроме того, по каждому варианту дисконтирование можно производить как по простым так и по сложным процентам.

При дисконтировании определяют так называемые мультипликаторы (дисконтные множители), показывающие, какую долю составляет Р в величине S . Величину Р , найденную дисконтированием S по вкладу, называют современной, или приведенной величиной S . Это понятие является важнейшим в количественном анализе финансовых операций, т.к. именно с помощью дисконтирования учитывается такой фактор, как время.

Формулы дисконтирования по платежу (второй подход) можно получить, используя известные формулы с заменой схемы начисления процентов на вклад Р схемой их удержания с суммы S
за тот же срок платежа. За основу их построения можно принять понятие единичного, периода удержания процентов (дисконтирования) и учетной ставки d , которая фиксирует процентное или долевое уменьшение суммы S на один период “назад”. Отсюда следует, что на начало этого периода эквивалентная выплате S сумма составит величину Р , которая при дробном измерении ставки определяется формулой:


По простым процентам за t периодов получим величину:

Данный вид дисконтирования используется при учете векселей.

Виды дисконтирования

Таким образом, дисконтирование - это определение начальной или современной суммы Р по известной конечной сумме S , которую следует отдать через некоторое время n . Разность S - P называется дисконтом и обозначается D .

Дисконт - это процентные деньги, начисленные и полученные заранее.

Сумму Р , вычисленную при дисконтировании, часто называют приведенной величиной платежа S .

Задача дисконтирования возникает очень часто при выработке условий контракта между двумя предприятиями, различными объектами хозяйствования, при определении настоящей рынковой стоимости векселей акций, облигаций и других ценных бумаг. Различают два вида дисконтирования: математическое и банковское.

Математическое дисконтирование

При математическом дисконтировании решается задача, обратная определению наращенной суммы. Сформулируем ее следующим образом: какую сумму следует выдать в долг на n лет, чтобы при начислении на нее процентов по ставке i получить наращенную сумму, равную S .

Для решения этой задачи используют формулу наращения по простой ставке процентов (2.4.):

где 1 / (1+n.i) - дисконтный множитель, показывающий, во сколько раз первоначальная сумма меньше наращенной.

Используя приведенные формулы рассчитаем величину эффективной годовой процентной ставки:


или

.

Банковское дисконтирование

Банковское дисконтирование основано на использовании учетной ставки d , т.е. проценты за пользование ссудой начисляются на сумму, подлежащую уплате в конце срока ссуды.

При банковском дисконтировании дисконтированная величина определяется по формуле:

где Р ¢
- дисконтированная величина;

S - наращенная сумма долга;

d - учетная (дисконтная) ставка, выраженная в десятичных дробях;

n – временный интервал от момента учета финансового инструмента до даты уплаты по нему в годах.

Дисконтирование с помощью математического и банковского методов, т.е. по процентной ставке i и учетной ставке d приводит к различным финансовым результатам. При использовании учетной ставки фактор времени учитывается более “строго”.

В отдельных случаях может возникнуть ситуация, когда совмещаются начисление процентов по ставке i и дисконтирование по ставке d . В этом случае наращенная величина ссуды будет определяться по формуле:

где Р - сумма, предоставленная в кредит;

n - общий срок платежного обязательства;

n ¢ - срок от момента учета обязательства до даты погашения долга, т.е. n ¢< n ;

S - сумма, полученная при учете обязательства.

Определение параметров по простым процентам

Для определения срока ссуды в днях следует воспользоваться формулой:

где К = 360 или 365 (366) дней.

Определение срока ссуды при использовании учетной ставки производится по формуле:

Расчет простых процентов в условиях инфляции

При начислении процентов может быть учтена инфляция - снижение покупательной способности денег. Инфляцию характеризуют два показателя: уровень инфляции и индекс инфляции. Уровень инфляции показывает, на сколько процентов изменяются цены за некоторый период времени, а индекс инфляции - во сколько раз выросли цены за период времени.

N < 1 можно определить по формуле:

Рассмотрим случай, когда при заданном годовом уровне инфляции ссуда выдается на срок больше года (n > 1). Если n - целое число, то получим.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составит P (1+ i ) , через 2 года P (1+ i )(1+ i )= P (1+ i ) 2 , через n лет - P (1+ i ) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i) n , (19)

где S - наращенная сумма, i - годовая ставка сложных процентов, n - срок ссуды, (1+ i ) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель (1+ i ).

Отметим, что при сроке n <1 наращение по простым процентам дает больший результат, чем по сложным, а при n >1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам,
когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

(20)

где i 1 , i 2 ,..., i k - последовательные значения ставок процентов, действующих в периоды n 1, n 2,..., nk соответственно.

Пример 6.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

Решение.

(1+0,3) 2 (1+0,28)(1+0,25)=2,704

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величине N :

А) для простых процентов

(1+ ni прост. ) = N , откуда

. (21)

Б) для сложных процентов

(1+ i сложн. ) n = N , откуда

. (22)

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

А) для простых процентов

, (23)

Б) для сложных процентов

. (24)

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2  0,7, а ln (1+ i )  i . Тогда

n » 0,7/ i . (25)

Пример 7.

Решение.

а) При простых процентах:

лет.

б) При сложных процентах и точной формуле:

Года.

в) При сложных процентах и приближенной формуле:

n » 0,7/i = 0,7/0,1 =7 лет .

Выводы:

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами:

1) По формуле сложных процентов

S=P(1+i) n , (26)

2) На основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые

S=P(1+i) a (1+bi) , (27)

где n = a + b , a -целое число лет, b -дробная часть года.

3) В ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i) a . (28)

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равна j , а число периодов начисления в году m . Тогда каждый раз проценты начисляют по ставке j / m . Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

S=P(1+j/m) N , (29)

где N - число периодов начисления.

Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам:

1) По формуле сложных процентов

S=P(1+j/m) N/ t , (30)

где N / t - число (возможно дробное) периодов начисления процентов, t - период начисления процентов,

2) По смешанной формуле

, (31)

где a - целое число периодов начисления (т.е. a = [ N / t ] - целая часть от деления всего срока ссуды N на период начисления t ),

b - оставшаяся дробная часть периода начисления ( b = N / t - a ).

Пример 8.

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Решение.

Начисление процентов ежеквартальное. Всего имеется кварталов.

1) = 73,713 млн. руб.

2) = 73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн . руб .

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m -разовое наращение в год по ставке j / m .

Если проценты капитализируются m раз в год, каждый раз со ставкой j / m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+i э ) n =(1+j/m) mn , (32)

где i э - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

(33)

Обратная зависимость имеет вид

j=m[(1+i э ) 1/m -1]. (34)

Пример 9.

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.

Решение

i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение.

j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i) n

и решим ее относительно P

, (35)

где

(36)

учетный или дисконтный множитель.

Если проценты начисляются m раз в году, то получим

, (37)

где

(38)

дисконтный множитель.

Величину P , полученную дисконтированием S , называют современной или текущей стоимостью или приведенной величиной S . Суммы P и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D = S - P называют дисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-d сл ) n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-d сл ) n =S. (40)

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f . Тогда в каждом периоде, равном 1/ m части года, дисконтирование осуществляется по сложной учетной ставке f / m . Процесс дисконтирования по этой сложной учетной m раз в году описывается формулой

P=S(1-f/m) N , (41)

где N - общее число периодов дисконтирования (N = mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в году m .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

(1-f/m) mn =(1-d сл ) n ,

из которого следует, что

d сл =1-(1-f/m) m . (42)

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительно S . Получаем

из P=S(1-d сл) n

, (43)

а из P = S (1- f / m ) N

. (44)


Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

Решение.

млн. руб.

Пример 12.

Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год.

Решение.

млн. руб.

Наращение и дисконтирование

Наращенная сумма при дискретных процентах определяется по формуле

S = P (1+ j / m ) mn ,

где j - номинальная ставка процентов, а m - число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m ® ¥ имеем

S= lim P(1+j/m) mn =P lim [(1+j/m) m ] n . (45)

m ® ¥ m ® ¥

Известно, что

lim (1+j/m) m =lim [(1+j/m) m/j ] j =e j ,

m ® ¥ m ® ¥

где e - основание натуральных логарифмов.

Используя этот предел в выражении (45), окончательно получаем, что наращенная сумма в случае непрерывного начисления процентов по ставке j равна

S = Pe jn . (46)

Для того, чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают символом d . Тогда

S=Pe d n . (47)

Сила роста d представляет собой номинальную ставку процентов при m ® ¥ .

Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле

P=Se - d n . (48)

Связь дискретных и непрерывных процентных ставок

Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения

(1+i) n =e d n . (49)

Из записанного равенства следует, что

d = ln (1+ i ) , (50)

i = e d -1 . (51)

Пример 13.

Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,

Решение.

Воспользуемся формулой (50)

d = ln (1+ i )= ln (1+0,15)=0,13976,

т.е. эквивалентная сила роста равна 13,976%.

Расчет срока ссуды и процентных ставок

В ряде практических задач начальная (P ) и конечная (S ) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.

Срок ссуды

При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.

i .

S=P(1+i) n

следует, что

(52)

где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

m раз в году из формулы

S=P(1+j/m) mn

получаем

(53)

d . Из формулы

P=S(1-d) n

имеем (54)

m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(55)

При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

ln ( S / P )= d n . (56)

Расчет процентных ставок

Из тех же исходных формул, что и выше, получим выражения для процентных ставок.

А) При наращивании по сложной годовой ставке i . Из исходной формулы наращения

S=P(1+i) n

следует, что

(57)

Б) При наращивании по номинальной ставке процентов m раз в году из формулы

S=P(1+j/m) mn

получаем (58)

В) При дисконтировании по сложной годовой учетной ставке d . Из формулы

P=S(1-d) n

имеем (59)

Г) При дисконтировании по номинальной учетной ставке m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(60)

Д) При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

(61)

Начисление процентов и инфляция

Следствием инфляции является падение покупательной способности денег, которое за период n характеризуется индексом J n . Индекс покупательной способности равен обратной величине индекса цен J p , т.е.

J n =1/ J p . (62)

Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.

Наращение по простым процентам

Если наращенная за n лет сумма денег составляет S , а индекс цен равен J p , то реально наращенная сумма денег, с учетом их покупательной способности, равна

C=S/J p . (63)

Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен h . Тогда годовой индекс цен составит (1+ h ).

Если наращение производится по простой ставке в течение n лет, то реальное наращение при темпе инфляции h составит

(64)

где в общем случае

(65)

и, в частности, при неизменном темпе роста цен h ,

J p =(1+h) n . (66)

Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна

(67)

Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется брутто-ставкой . Брутто-ставка, которую мы будем обозначать символом r , находится из равенства скорректированного на инфляцию множителя наращения по брутто-ставке множителю наращения по реальной ставке процента

(68)

откуда

(69)

Наращение по сложным процентам

Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит

(70)

где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.

В этом случае падение покупательной способности денег компенсируется при ставке i = h , обеспечивающей равенство C = P .

Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.

А) Корректировка ставки процентов , по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется брутто-ставкой. Будем обозначать ее символом r . Считая, что годовой темп инфляции равен h , можем написать равенство соответствующих множителей наращения

(71)

где i - реальная ставка.

Отсюда получаем формулу Фишера

r=i+h+ih . (72)

То есть инфляционная премия равна h + ih .

Б) Индексация первоначальной суммы P . В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда

S=PJ p (1+i) n . (73)

Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два - корректировку ставки процента.

Измерение реальной ставки процента

На практике приходится решать и обратную задачу - находить реальную ставку процента в условиях инфляции. Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку i по заданной (или объявленной) брутто-ставке r .

При начислении простых процентов годовая реальная ставка процентов равна

(74)

При начислении сложных процентов реальная ставка процентов определяется следующим выражением

(75)

Практические приложения теории

Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.

Конвертация валюты и начисление процентов

Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов , сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:

1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.

2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.

3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.

4. С конвертацией. Рублевая сумма конвертируется в какую-либо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.

Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.

Предварительно введем следующие ОБОЗНАЧЕНИЯ:

P v - сумма депозита в валюте,

P r - сумма депозита в рублях,

S v - наращенная сумма в валюте,

S r - наращенная сумма в рублях,

K 0 - курс обмена в начале операции (курс валюты в руб.)

K 1 - курс обмена в конце операции,

n - срок депозита,

i - ставка наращения для рублевых сумм (в виде десятичной дроби),

j - ставка наращения для конкретной валюты.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА

Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит

.

Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.

Множитель наращения с учетом двойной конвертации равен

,

где k = K 1 / K 0 - темп роста обменного курса за срок операции.

Мы видим, что множитель наращения m связан линейной зависимостью со ставкой i и обратной с обменным курсом в конце операции K 1 (или с темпом роста обменного курса k ).

Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА от соотношения конечного и начального курсов обмена k .

Простая годовая ставка процентов, характеризующая доходность операции в целом, равна

.

Подставим в эту формулу записанное ранее выражение для S v

.

Таким образом с увеличением k доходность i эфф падает по гиперболе с асимптотой -1/ n . См. рис. 2.

Рис. 2.

Исследуем особые точки этой кривой. Отметим, что при k =1 доходность операции равна рублевой ставке, т.е. i эфф = i . При k >1 i эфф < i , а при k <1 i эфф > i . На рис. 1 видно, при некотором критическом значении k , которое мы обозначим как k * , доходность (эффективность) операции оказывается равной нулю. Из равенства i эфф =0 находим, что k * =1+ ni , что в свою очередь означает K * 1 = K 0 (1+ ni ).

ВЫВОД 1: Если ожидаемые величины k или K 1 превышают свои критические значения, то операция явно убыточна (i эфф <0 ).

Теперь определим максимально допустимое значение курса обмена в конце операции K 1 , при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций

.

Из записанного равенства следует, что

или

.

ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K 1 .

ВАРИАНТ:РУБЛИ ® ВАЛЮТА ® ВАЛЮТА ® РУБЛИ

Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы

.

Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.

Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.

.

Отсюда, подставив выражение для S r , получаем

.

Зависимость показателя эффективности i эфф от k линейная, она представлена на рис. 3

Рис . 3.

При k=1 i эфф =j , при k>1 i эфф >j , при k<1 i эфф .

Найдем теперь критическое значение k * , при котором i эфф =0 . Оно оказывается равным

или .

ВЫВОД 3: Если ожидаемые величины k или K 1 меньше своих критических значений, то операция явно убыточна (i эфф <0 ).

Минимально допустимая величина k (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется путем приравнивания множителей наращения для альтернативных операций (или из равенства i эфф = i )

,

откуда min или min .

ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K 1 .

Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА k =1 i э = i , при k >1 i э < i , а при k <1 i э > i .

Критическое значение k , при котором эффективность операции равна нулю, т.е. i э =0 ,

определяется как k * =(1+ i ) n , что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: .

ВЫВОД 5: Если ожидаемые величины k или K 1 больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (i э <0 ).

Максимально допустимое значение k , при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке

Контур финансовой операции

Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике.


Рис. 5.

Пусть ссуда в размере D 0 выдана на срок T . На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа R 1 и R 2 , а в конце срока выплачивается остаток задолженности R 3 , подводящий баланс операции.

На интервале времени t 1 задолженность возрастает до величины D 1 . В момент t 1 долг уменьшается до величины K 1 = D 1 - R 1 и т.д. Заканчивается операция получением кредитором остатка задолженности R 3 . В этот момент задолженность полностью погашается.

Назовем график типа б) контуром финансовой операции . Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.

С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года . Второй метод назван правилом торговца . Он обычно применяется коммерческими фирмами в сделках со сроком не более года .

Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.

Актуарный метод

Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.

Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:

K 1 =D 0 (1+t 1 i)-R 1 ; K 2 =K 1 (1+t 2 i)-R 2 ; K 2 (1+t 3 i)-R 3 =0,

где периоды времени t 1 , t 2 , t 3 - заданы в годах, а процентная ставка i - годовая.


Правило торговца

Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.

1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.

2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периодазадолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.

При общем сроке ссуды T £ 1 алгоритм можно записать следующим образом

,

где S - остаток долга на конец срока,

D - наращенная сумма долга,

K - наращенная сумма платежей,

R j - сумма частичного платежа,

t j - интервал времени от момента платежа до конца срока,

m - число частичных (промежуточных) платежей.

Переменная сумма счета и расчет процентов

Рассмотрим ситуацию, когда в банке открыт сберегатель­ный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел . Каждый раз, когда сумма на счете изменяется, вычисляется процентное число C j за прошедший период j , в течение которого сумма на счете оставалась неизменной, по формуле

,

где t j - длительность j -го периода в днях.

Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D :

,

где K - временная база (число дней в году, т.е. 360 либо 365 или 366), i - годовая ставка простых процентов (в %).

При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.

Пример 14.

Пусть 20 февраля был открыт счет до востребования в размере P 1 =3000 руб., процентная ставка по вкладу равнялась i =20% годовых. Дополнительный взнос на счет составил R 1 =2000 руб. и был сделан 15 августа. Снятие со счета в размере R 2 =-4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.

Решение.

Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа (P 1 =3000, t 1 =10+5*30+15=175), с 15 августа по 1 октября (P 2 = P 1 + R 1 =3000+2000=5000 руб., t 2

Сумма, выплачиваемая при закрытии счета, равна

P 3 +I=1000+447.22=1447 руб . 22 коп .

Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.

C умму, выплачиваемую при закрытии счета, найдем следующим образом

Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.

Изменение условий контракта

В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности , в котором сумма заменяемых платежей, приведенных к какому-либо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для средне- и долгосрочных - сложные ставки.



Похожие статьи