Причины повышения углекислого газа в атмосфере. Уровень СО2 в мире: мы дошли до точки невозврата

Похоже, Земля переступила знаковый порог на фоне глобального потепления.

Обычно в сентябре показатели содержания углекислого газа (СО2) в атмосфере бывают минимальные. Эта концентрация является эталонной планкой, по которой измеряют колебания уровня парниковых газов весь следующий год. Но в сентябре текущего год уровень СО2 остается высоким, составляя примерно 400 миллионных долей, и многие ученые считают, что при нашей жизни концентрация парниковых газов не опустится ниже этого порогового значения.

Порошковые частицы могут иметь эффект нагревания или охлаждения

Двуокись углерода может быть основной движущей силой глобального потепления и изменения климата, но это не единственный. Многие другие соединения в виде газов или твердых веществ, известные как «климатические катализаторы», влияют на количество солнечной энергии, которую держит земля, и количество, которое она отражает обратно в космос. Эти климатические катализаторы включают в себя многие загрязнители воздуха, такие как озон, метан, твердые частицы и оксид азота.

Частицы пыли представляют собой комплексный загрязнитель. В зависимости от их состава они могут оказывать охлаждающее или потепление на местный и глобальный климат. Например, черный углерод, один из компонентов тонкого ТЧ и результат неполного сгорания топлива, поглощает солнце и инфракрасные лучи в атмосфере и, следовательно, оказывает потепление.

Земля стабильно накапливает СО2 в атмосфере со времен промышленной революции, однако уровень в 400 миллионных долей создает новую норму, какой на нашей планете не было миллионы лет.

«Последний раз содержание СО2 в атмосфере нашей планеты составляло 400 миллионных долей около трех с половиной миллионов лет назад, и климат в то время очень сильно отличался от сегодняшнего», — сообщил по электронной почте Christian Science Monitor адъюнкт-профессор Школы по изучению моря и атмосферных явлений при Университете штата Нью-Йорк в Стоуни-Брук Дэвид Блэк (David Black).

Другие типы ТЧ, содержащие соединения серы или азота, имеют противоположный эффект, обычно действуя как малые зеркала, отражающие солнечную энергию, таким образом охлаждая. Говоря простыми словами, это зависит от цвета частицы. «Белые» частицы скорее отражают солнечный свет, а «черный» и «коричневый» проглатывают его.

Подобное явление происходит на поверхности - некоторые частицы осаждаются в дождь и снег. Тем не менее, черный углерод может перемещаться на большое расстояние от места его происхождения и падать на снежные и ледяные листы. В последние годы черные отложения углерода в Арктике сделали белые поверхности более темными и уменьшили их отражательную способность, а это означает, что наша планета больше тепла. Благодаря этой дополнительной теплоте размеры белых поверхностей в Арктике сокращаются еще быстрее.

«В частности, в Арктике (севернее 60-й широты) было значительно теплее, чем сегодня, а уровень моря на планете был на 5-27 метров выше нынешнего», — отметил Блэк.

«Тогда атмосфере понадобились миллионы лет, чтобы уровень СО2 в ней достиг 400 миллионных долей. А чтобы он упал до 280 миллионных долей (такой показатель был накануне промышленной революции), понадобились еще миллионы лет. Климатологов очень тревожит, что люди всего за несколько столетий сделали то, что природа сделала за миллионы лет, причем большая часть этих изменений приходится на последние 50-60 лет».

Интересным фактом является то, что многие климатические процессы контролируются не доминантных составляющих нашей атмосферы, и некоторое количество газа содержится только в очень небольших количествах. Любое отклонение в этих очень малых количествах может повлиять на наш климат и изменить его.

«Цвет» частиц в воздухе или осажденный на поверхности не единственный способ повлиять на климат. Часть воздуха состоит из водяных паров, несущих крошечные молекулы воды. В сжатом виде мы знаем их как облака. Частицы играют важную роль в формировании облаков; как долго они живут; сколько солнечных лучей может отражать; какие осадки они дают, и где, и так далее. Облака, несомненно, очень важны для нашего климата; концентрации и состав твердых частиц на практике могут изменить время и место традиционного режима осадков.

Глобальная концентрация СО2 уже несколько лет периодически поднимается выше 400 миллионных долей; но в летний сезон вегетации значительная часть углекислого газа в атмосфере поглощается в процессе фотосинтеза, и поэтому большую часть года уровень СО2 ниже этой отметки.

Контекст

Безумие парникового эффекта

Wprost 15.12.2015

Мир плохо подготовлен к глобальному потеплению

The Globe And Mail 09.05.2016

Климатическая катастрофа в Европе

Dagbladet 02.05.2016

Пора заняться климатом

Project Syndicate 26.04.2016

Ядовитый климат

Die Welt 18.01.2016
Но из-за деятельности человека (прежде всего, из-за сжигания органического топлива) в атмосферу выбрасывается больше СО2, и годовой минимум все ближе и ближе подходил к отметке 400 миллионных долей. Ученые опасаются, что в этом году планета достигла точки невозврата.

«Возможно ли, чтобы в октябре 2016 года месячный показатель был ниже сентябрьского, опустившись ниже 400 миллионных долей? Практически нет», — написал на прошлой неделе в своей статье директор программы из Института океанографии им. Скрипс Ральф Килинг (Ralph Keeling).

Изменения количества и режимов осадков имеют реальные экономические и социальные издержки, поскольку они обычно влияют на глобальное производство продуктов питания и, следовательно, на цены на продукты питания. Доклад ЕАОС показывает, что все регионы Европы подвержены влиянию изменения климата, что приводит к широкому спектру воздействий на общество, экосистемы и здоровье человека. Отчет по Европе показывает более высокие средние температуры в сочетании с снижением количества осадков в южных регионах и увеличением количества осадков в северной Европе.

В прошлом бывали случаи, когда уровень СО2 падал ниже прежних сентябрьских значений, но они крайне редки. По словам ученых, даже если мир прямо с завтрашнего дня полностью прекратит выбрасывать углекислый газ в атмосферу, его концентрация еще несколько лет будет оставаться выше 400 миллионных долей.

«В лучшем случае (при таком сценарии) можно ждать стабилизации в ближайшей перспективе, а поэтому уровень СО2 вряд ли сильно изменится. Но лет через 10 или около того он начнет снижаться, — сказал изданию Climate Central главный климатолог НАСА Гэвин Шмидт (Gavin Schmidt). — На мой взгляд, мы больше не увидим месячный показатель ниже 400 миллионных долей».

Связь между изменением климата и качеством воздуха

Кроме того, ледниковые покровы и ледники растают и повышаются уровни моря. Ожидается, что все эти тенденции продолжатся. Хотя мы не совсем понимаем, как изменение климата может повлиять на качество воздуха, и наоборот, недавние исследования показывают, что эта взаимозависимость может быть сильнее, чем ожидалось ранее. Межправительственная группа экспертов по изменению климата, международный орган, созданный для оценки изменения климата, предсказывает дальнейшее снижение качества воздуха в городах в результате изменения климата.

Хотя рост концентрации СО2 в атмосфере дает повод для озабоченности, следует отметить, что сама по себе отметка в 400 миллионных долей это в большей степени маршрутный ориентир, чем жесткий показатель, предвещающий миру климатический апокалипсис.

«Людям нравятся округленные числа, — говорит профессор экологии из Университета Конкордия в Монреале Дэймон Мэтьюз (Damon Matthews). — Также весьма символично и то, что параллельно с увеличением СО2 мировая температура на один градус превысила доиндустриальный уровень».

Во многих регионах мира изменения, как ожидается, повлияют на местный климат, включая частоту приливов и безветренных периодов. Большинство солнечных лучей и более высоких температур могут не только продлить периоды, в течение которых концентрация озона возрастает, но и увеличивать их пиковые значения. Это не хорошая новость для южной Европы, которая уже переживает периоды чрезмерно высоких концентраций озона наземного уровня.

Пока неизвестно, сможет ли мир сократить выбросы парниковых газов в достаточной степени, чтобы достичь цели в 2 градуса. На основе нескольких различных путей выбросов Программа Организации Объединенных Наций по окружающей среде определила разрыв между текущими обязательствами по сокращению выбросов и сокращениями, необходимыми для достижения целевого показателя.

Конечно, эти показатели в основном символические, но они являются реальной иллюстрацией той траектории, которой следует земной климат.

«Концентрация СО2 это в некоторой степени обратимый показатель, потому что растения поглощают углекислый газ, — отмечает доктор Мэтьюз. — А вот температура, возникающая на основе таких изменений, в отсутствие человеческих усилий необратима».

Понятно, что необходимы дополнительные усилия для дальнейшего сокращения выбросов, если мы хотим увеличить наши шансы ограничить повышение температуры до 2 градусов. Прогнозы заключаются в том, что некоторые регионы, такие как Арктика, будут нагреваться намного больше. Ожидается, что более высокие температуры над землей и океанами будут влиять на уровни влажности в атмосфере, что, в свою очередь, может повлиять на характер осадков. Пока неясно, в какой степени большие или меньшие концентрации паров воды в атмосфере могут влиять на характер осадков или глобальный и местный климат.

Двуокись углерода в виде парникового газа не только способствует глобальному потеплению, но и негативно влияет на состояние мирового океана из-за его подкисления. Когда углекислый газ в больших объемах растворяется в воде, часть его превращается в углекислоту, которая вступает в реакцию с молекулами воды, производя ионы водорода, что повышает кислотность среды океана. Это в свою очередь ведет к обесцвечиванию кораллов и создает помехи жизненному циклу мелких организмов, что также негативно отражается на организмах покрупнее, расположенных далее в пищевой цепочке.

Однако степень воздействия изменения климата будет частично зависеть от того, как различные области адаптируются к этим изменениям. Адаптационные меры - от улучшения городского планирования до адаптации инфраструктуры, таких как здания и транспорт, - уже внедряются в Европе, но в будущем потребуется больше. Для адаптации к изменению климата можно использовать широкий спектр мер. Например, посадка деревьев и увеличение зеленых насаждений в городских районах смягчает воздействие приливов, улучшая качество воздуха.

Возможны сценарии, в которых каждый победит

Многие климатические факторы являются распространенными загрязнителями воздуха. Меры по сокращению выбросов предшественников черного углерода, озона или озона полезны как для здоровья человека, так и для климата. Парниковые газы и загрязнители воздуха имеют общие источники выбросов. Поэтому есть потенциальные выгоды, которые могут быть достигнуты путем ограничения выбросов в отношении того или другого.

Новость о пороге в 400 миллионных долей появилась в момент, когда мировые лидеры сделали ряд шагов к ратификации Парижского соглашения по климатическим изменениям, которое направлено на систематическое уменьшение углеродных выбросов во всем мире, начиная с 2020 года.

Ратифицирующим соглашение странам предстоит большая работа.

Переход к экономике с низким уровнем выбросов углерода и существенное сокращение выбросов парниковых газов не могут быть достигнуты без реструктуризации потребления энергии Союзом. Они также обеспечивают более широкое применение новых технологий, такие как улавливание и хранение углекислого газа углерода, выбросы двуокиси углерода из промышленного объекта фиксируются и хранятся под землю, в основном, в геологических формациях, в которых она не может проникнуть в атмосфере. Некоторые из этих технологий - особенно улавливание и хранение углерода - не всегда могут быть лучшим решением в долгосрочной перспективе.

«Чтобы снизить уровень СО2 в атмосфере во временном масштабе нескольких столетий, нам надо не только использовать и разрабатывать источники энергии не на основе углерода; нам нужно также физическими, химическими и биологическими методами удалять СО2 из атмосферы, — говорит Блэк. — Технология удаления атмосферного СО2 есть, но в масштабах существующей проблемы она пока неприменима».

Но, препятствуя выпуску большого количества углерода в атмосферу в краткосрочной и среднесрочной перспективе, они могут помочь нам смягчить изменение климата до тех пор, пока долгосрочные структурные изменения не станут эффективными. Важную роль играет используемая технология. Некоторые из технологий, используемых для сбора и хранения двуокиси углерода, могут, например, помочь улучшить качество воздуха в Европе, а другие нет. Аналогичным образом, замена ископаемого топлива биотопливом может сократить выбросы парниковых газов и помочь достичь целевых показателей климата.

Вячеслав Викторович Алексеев, доктор физико-математических наук, заведующий лабораторией возобновляемых источников энергии географического факультета Московского государственного университета им.М.В.Ломоносова. Специалист в области математического и физического моделирования геофизических систем.

Софья Валентиновна Киселева, кандидат физико-математических наук, старший научный сотрудник той же лаборатории. Занимается физическим моделированием процессов переноса углекислого газа, проблемами современных изменений климата.

Надежда Ивановна Чернова, кандидат биологических наук, старший научный сотрудник той же лаборатории. Занимается экологическими аспектами применения солнечной энергии, проблемами рационального использования природных ресурсов.

Тем не менее, она может увеличить выбросы твердых частиц и других загрязнителей воздуха канцерогенными, что ухудшится качество воздуха в Европе. Борьба с энергией. Углекислый газ, содержащийся в воздухе, является незаменимым веществом для фотосинтеза растений и источником углерода для произведенной биомассы. Углерод образует основной скелет органического вещества, а кислород высвобождается обратно в атмосферу. В химических связях органического вещества энергия солнечной радиации сохраняется. Это источник энергии для всей жизни на Земле.

В начале 1998 г. бывший президент Национальной академии наук США Ф.Зейтц представил на рассмотрение научной общественности петицию, призывающую правительства США и других стран отклонить подписание достигнутых в Киото в декабре 1997 г. соглашений об ограничении выбросов парниковых газов. К петиции прилагался информационный обзор под названием “Влияние на окружающую среду роста содержания диоксида углерода в атмосфере” . В нем содержался подбор опубликованных результатов научных исследований, призванный доказать не только отсутствие эмпирических данных, подтверждающих предсказываемое многими учеными будущее потепление климата, но и несомненный выигрыш для человечества от роста парниковых газов. В обзоре были выдвинуты следующие тезисы.

Поэтому повсюду на поверхности Земли, где позволяют среды обитания, существует конкурентная борьба за падающую солнечную энергию между популяциями растений и внутри популяций. И везде, где обнаруживается биомасса зеленых растений, есть потребители и «мошенники», которые также конкурируют за сохраненную солнечную энергию.

Это основной принцип биологического насоса углеродного цикла между атмосферой и наземными экосистемами или океаном. Каждый год в этом углеродном цикле участвует четверть общего количества атмосферного углерода. Это отражается на увеличении асимметризации, увеличении темпов роста растений и производстве их биомассы.

Наблюдаемый ныне рост СО 2 в атмосфере происходит после почти 300-летнего периода потепления. Поэтому этот рост может быть не результатом деятельности человека, а следствием естественного процесса - интенсификации выделения СО 2 океаном при увеличении температуры воды. Кроме того, по сравнению с ежегодным антропогенным поступлением в атмосферу углерода (5.5 Гт) его содержание даже в резервуарах подвижного фонда (в атмосфере - около 750 Гт, поверхностных слоях океана - 1000 Гт, околоземной биоте, включая почвы и детрит, - около 2 200 Гт) столь велико, что антропогенный фактор роста СО 2 в атмосфере трудно признать значимым.

Завод органического завода Представьте завод как завод, который производит органическое вещество. Он имеет три завода: две поставки и одну основную производственную деятельность. В одной операции подачи простые процессы получают путем фотосинтеза. Второе растение готовит воду и другие минералы, особенно азот, для основного производственного предприятия. Это зависит главным образом от наличия полезных ископаемых и воды из почвы. В основных производственных операциях короткие углеродные цепи простых сахаров затем взаимосвязаны, дополняются минеральными элементами и производятся гораздо более сложные растительные и растительные материалы.

Далее авторы обзора приводят многочисленные данные спутниковых измерений температуры нижней тропосферы (на высоте около 4 км) за период 1958-1996 гг. и отмечают, что начиная с 1979 г. наблюдается слабый отрицательный тренд средней глобальной температуры (–0.047°С за 10 лет). В США же за последние 10 лет приземная температура воздуха уменьшилась на 0.08°С.

Если завод должен работать эффективно, поставки первой операции должны соответствовать поставкам второй операции подачи. Это означает, что устройство ассимиляции должно соответствовать размеру корневой системы данного дерева. Вторая цепочка поставок также должна увеличить производство, чтобы поставки с обеих сторон были сбалансированы.

Совершенное естественное управление Когда в почве имеется достаточное количество питательных веществ и воды, подземный транспорт будет только увеличивать скорость удаления и подачи грунта в русло. Общее производство завода быстро растет. Это пример хорошо оплодотворенной области. Однако в реальной экосистеме растения часто конкурируют за питательные вещества. Это ограничит инвестиции в наземное движение, поскольку оно имеет перепроизводство и, наоборот, увеличит инвестиции в подземный транспорт и расширит эту операцию.

В то же время данные метеостанций дают положительные тренды температур приземного слоя (+0.07°С за 10 лет). Расхождения в результатах приводят к тому, что моделирование будущих изменений климата, основанное на данных о росте температуры, приводит к неверным прогнозам. Обсуждая компьютерные модели парникового эффекта и потепления климата, авторы обзора подчеркивают, что климат - сложная, нелинейная динамическая система. Неопределенности влияния, например, океанических поверхностных течений, переноса тепла в океане, влажности, облачности и т.п., по мнению авторов, столь велики в сравнении с воздействием СО 2 , что модельные оценки современного температурного хода существенно расходятся с имеющимися эмпирическими данными. Многочисленные обратные связи климатической системы, неудовлетворительно отражаемые в моделях, также приводят к ошибкам в прогнозах и несоответствию с реальностью.

Критикуя качество данных наземного измерения температуры воздуха, авторы обзора ссылаются на тепловое воздействие урбанизированных территорий, которое искажает действительную картину взаимосвязи роста концентрации парниковых газов и изменений температуры атмосферы. В современных изменениях климата нет ничего необычного; это лишь естественные изменения, вызванные как внутренними земными вариациями, так и внешними - в частности, колебаниями солнечной активности. Спутниковые данные, полученные, правда, всего за четыре года (1993-1997), по утверждению авторов, не показывают каких-либо изменений уровня океана, как это предсказывают модели глобального потепления. Число сильных тропических ураганов в Атлантике за период 1940-1997 гг. и максимальная скорость ветра в них снизились, что также противоречит и идее глобального потепления, и модельным результатам.

Здесь следует подчеркнуть, что общепризнано существование более десятка климатообразующих факторов. Как наиболее существенные выделяются следующие:

В исследовании В.В.Клименко с коллегами было проанализировано воздействие этих факторов на радиационный баланс в пределах десятилетия и последнего столетия. При рассмотрении вековой изменчивости климата оказалось, что именно накопление парниковых газов в атмосфере определило произошедшее повышение среднеглобальной температуры на 0.5°C. Однако авторы подчеркивают, что объяснение нынешних и будущих изменений климата только антропогенным фактором покоится на весьма шатком фундаменте, хотя его роль со временем, безусловно, возрастает.

Определенный интерес представляет недавняя работа С.Корти с сотрудниками, в которой наблюдающееся потепление в Северном полушарии также связывается в основном с естественными изменениями в режимах циркуляции атмосферы . Правда, ее авторы подчеркивают, что этот факт не может служить доказательством отсутствия антропогенного воздействия на климат. Детальный модельный анализ роли тех же климатических факторов в повышении средней приземной температуры воздуха был проведен недавно английскими учеными . Их результаты показывают, что потепление атмосферы в первой половине XX в. (между 1910 и 1940 гг.) происходило в основном из-за колебания солнечной активности и в меньшей степени антропогенных факторов - парниковых газов и тропосферного сульфат-аэрозоля. Что касается периода 1946-1996 гг., то здесь естественные вариации солнечной и вулканической активности оказывают лишь второстепенное воздействие на климат по сравнению с антропогенным влиянием.

Влияние главных климатообразующих факторов на изменение средней глобальной приземной температуры. Оценки вкладов с указанием разбросов значений: парниковых газов и сульфат-аэрозолей (белые прямоугольники); солнечной активности (заполненные точками) и их совместного влияния (заштрихованные). Черными прямоугольниками показаны результаты инструментальных наблюдений. (Tett S.F.B., Stott P.A. et al. 1999.)
Анализ теплой биосферы мелового периода как аналога прогнозируемого потепления, проведенный Н.М.Чумаковым, показал, что воздействия основных климатообразующих факторов (помимо углекислого газа) недостаточно для объяснения потепления такого масштаба в прошлом . Парниковый эффект необходимой величины отвечал бы многократному увеличению содержания СО 2 в атмосфере. Толчком грандиозных климатических изменений в этот период развития Земли, вероятнее всего, стала положительная обратная связь между ростом температуры океанов и морей и увеличением концентрации атмосферной углекислоты.

Большое внимание в упомянутом обзоре уделено СО 2 как “удобрению”. Авторы приводят данные об ускорении роста растений при повышенном содержании углекислого газа в атмосфере. В частности, реакция молодых деревьев сосны, молодых апельсиновых деревьев, пшеницы на увеличение содержания СО 2 в окружающей среде в диапазоне от 400 до 800 ppm почти линейна и положительна. Отсюда авторы делают вывод о том, что эти данные можно легко перенести на различные уровни обогащения СО 2 и на различные виды растений. К воздействию возрастающего количества углекислого газа в атмосфере авторы относят и увеличение массы лесов США (на 30% с 1950 г.). Указывается, что больший стимулирующий эффект рост СО 2 производит на растения, произрастающие в более засушливых (стрессовых) условиях. А интенсивный рост растительных сообществ, как утверждают авторы обзора, неизбежно приводит к увеличению суммарной массы животных и оказывает положительное воздействие на биоразнообразие в целом. Отсюда следует оптимистичный вывод: “В результате увеличения атмосферного СО 2 мы живем во все более и более благоприятных условиях окружающей среды. Наши дети будут наслаждаться жизнью на Земле с гораздо большим количеством растений и животных. Это замечательный и непредвиденный подарок от индустриальной революции”.

Все же нам представляется, что многие из прилагаемых к петиции данных достаточно противоречивы.

Вместо потепления - похолодание?

Безусловно, колебания уровня СО 2 в атмосфере имели место и в прошлые эпохи, однако никогда эти изменения не происходили столь быстро. Но если в прошлом климатическая и биологическая системы Земли в силу постепенности изменений состава атмосферы “успевали” перейти в новое устойчивое состояние и находились в квазиравновесии, то в современный период при интенсивном, чрезвычайно быстром изменении газового состава атмосферы все земные системы выходят из стационарного состояния. И если даже встать на позицию авторов, отрицающих гипотезу глобального потепления, нельзя не отметить, что последствия такого “выхода из квазистационара”, в частности климатические изменения, могут быть самыми серьезными.

Кроме того, согласно некоторым прогнозам, после достижения максимума концентрации СО 2 в атмосфере она начнет падать из-за уменьшения антропогенных выбросов, поглощения углекислоты Мировым океаном и биотой. В этом случае растениям вновь придется адаптироваться к изменившейся среде обитания.

В обзоре безусловно верно замечено, что при моделировании последствий роста СО 2 и других парниковых газов в атмосфере, а также в современных теоретических построениях не учитываются многие обратные связи климатических систем, что приводит к неверным прогнозам и даже, как уверяют авторы, к ошибочности самой идеи глобального потепления. Однако, по нашему мнению, это должно приводить не к отрицанию возможного потепления климата, а к вероятности возникновения непредсказуемых климатических последствий (например, противоположного эффекта - похолодания в ряде районов земного шара).

В связи с этим чрезвычайно интересны некоторые результаты математического моделирования сложных последствий возможного изменения климата Земли. Эксперименты с трехмерной моделью объединенной системы океан-атмосфера, проведенные американскими исследователями, показали, что в ответ на потепление термохалинная северо-атлантическая циркуляция (Северо-Атлантическое течение) замедляется . Критическая величина концентрации СО 2 , вызывающая такой эффект, лежит между двумя и четырьмя доиндустриальными величинами содержания СО 2 в атмосфере (она равна 280 ppm, а современная концентрация составляет около 360 ppm).

Используя более простую модель системы океан-атмосфера, специалисты провели детальный математический анализ описанных выше процессов . Согласно их расчетам, при росте концентрации углекислого газа на 1% в год (что соответствует современным темпам) Северо-Атлантическое течение замедляется, а при содержании СО 2 , равном 750 ppm, наступает его коллапс - полное прекращение циркуляции. При более медленном росте содержания углекислоты в атмосфере (и температуры воздуха) - например на 0.5% в год, при достижении концентрации 750 ppm циркуляция замедляется, но затем медленно восстанавливается. В случае ускоренного роста парниковых газов в атмосфере и связанного с ним потепления Северо-Атлантическое течение разрушается при более низких концентрациях СО 2 - 650 ppm. Причины изменения течения в том, что потепление наземного воздуха вызывает рост температуры поверхностных слоев воды, а также повышение давления насыщенного пара в северных районах, а значит, и усиленную конденсацию, из-за чего возрастает масса распресненной воды на поверхности океана в Северной Атлантике. Оба процесса приводят к усилению стратификации водяного столба и замедляют (или вовсе делают невозможным) постоянное формирование холодных глубинных вод в северной части Атлантики, когда поверхностные воды, охлаждаясь и становясь более тяжелыми, опускаются в придонные области и затем медленно перемещаются к тропикам.

Исследования такого рода последствий потепления атмосферы, проведенные недавно Р.Вудом с сотрудниками, дает еще более интересную картину возможных событий. Помимо уменьшения общего атлантического переноса на 25% при современных темпах роста парниковых газов произойдет “отключение” конвекции в Лабрадорском море - одном из двух северных центров формирования холодных глубинных вод. Причем это может иметь место уже в период от 2000 до 2030 г.

Эволюция максимального погружения меридионального потока Северо-Атлантического течения (результаты расчетов по пяти сценариям глобального потепления). I - концентрация СО 2 достигает 560 ppm, поток слегка ослабевает, затем восстанавливается; II, IV - концентрация СО 2 - 650 и 750 ppm, скорость роста СО 2 1% в год, циркуляция разрушается; III, V - 650 и 750 ppm, скорость роста 0.5% в год, поток ослабевает, затем восстанавливается на более низком уровне.
Указанные колебания Северо-Атлантического течения могут повлечь за собой весьма серьезные последствия. В частности, при отклонении распределения потоков тепла и температуры от современного в атлантическом регионе Северного полушария средние температуры приземного воздуха над Европой могут существенно понизиться. Более того, изменения в скорости Северо-Атлантического течения и нагрева поверхностных вод могут уменьшить поглощение океаном СО 2 (по расчетам упомянутых специалистов - на 30% при удвоении концентрации углекислого газа в воздухе), что следует учитывать и в прогнозах будущего состояния атмосферы, и в сценариях выбросов парниковых газов. Существенные изменения могут произойти и в морских экосистемах, включая популяции рыб и морских птиц, зависящих не только от специфических климатических условий, но и от питательных веществ, которые выносятся к поверхности холодными океаническими течениями. Здесь мы хотим подчеркнуть чрезвычайно важный момент, упомянутый выше: последствия роста парниковых газов в атмосфере, как видно, могут быть гораздо сложнее, чем однородное потепление приземной атмосферы.

Возможное нарушение экосистем

При моделировании обмена углекислым газом приходится учитывать и воздействие на газоперенос состояния границы раздела океана и атмосферы . В течение ряда лет в лабораторных и натурных экспериментах мы исследовали интенсивность переноса СО 2 в системе вода-воздух. Рассматривалось воздействие на газообмен ветроволновых условий и дисперсной среды, образующейся вблизи границы раздела двух фаз (брызги над поверхностью, пена, воздушные пузырьки в толще воды). Оказалось, что скорость газопереноса при изменении характера волнения от гравитационно-капиллярного к гравитационному существенно увеличивается. Этот эффект (помимо повышения температуры поверхностного слоя океана) может внести дополнительный вклад в поток углекислоты между океаном и атмосферой. С другой стороны, существенным стоком СО 2 из атмосферы являются осадки, интенсивно вымывающие, как показали наши исследования, помимо других газовых примесей и углекислый газ. Расчеты с использованием данных о содержании растворенного углекислого газа в дождевой воде и годовой сумме осадков показали, что в океан ежегодно с дождями может поступать 0.2-1 Гт СО 2 , а общее количество углекислого газа, вымываемого из атмосферы, может достигать величины 0.7-2.0 Гт.

Возвращаясь к тезисам авторов приложения к петиции, отметим, что наиболее спорными представляются данные о благотворности роста СО 2 для зеленых растений. Дело в том, что существует целый ряд научных данных, согласно которым повышение концентрации СО 2 в атмосфере даже без учета глобального потепления способно привести к значительному изменению структуры и функционирования экосистем, что может быть неблагоприятно для растений . Положительная реакция на повышенное содержание углекислого газа в воздухе, наблюдаемая у отдельного растения, вовсе не обязательно означает, что будет иметь место усиленный рост растительных сообществ в целом.

Соображения авторов о роли СО 2 как стимулятора роста коренится в деталях фотосинтеза. Действительно, повышение концентрации углекислого газа может интенсифицировать этот процесс и, следовательно, способствовать росту растения. Пользу от этого извлекают так называемые С 3 -растения, к которым относятся практически все деревья и многие из основных сельскохозяйственных культур: рис, пшеница, картофель, бобовые. У С 3 -растений на первой стадии фиксации молекула СО 2 связывается с рибулозодифосфатом, содержащим 5-углеродный сахар. В результате реакции, происходящей под действием фермента рибулозодифосфаткарбоксилазы, образуется короткоживущее нестабильное соединение, включающее 6-углеродный сахар. Оно распадается на два производных, которые содержат по три атома углерода - отсюда и название “С 3 -растения”. С диоксидом углерода за активный центр рибулозодифосфаткарбоксилазы конкурирует кислород атмосферного воздуха. Если побеждает О 2 , растение теряет энергию, так как во время утилизации кислорода не происходит фиксации СО 2 . По мере же увеличения концентрации углекислого газа вероятность его “выигрыша” в конкуренции с О 2 за связывание с активным центром фермента повышается. Действительно, в ряде экспериментов, когда концентрация СО 2 устанавливалась на уровне 600 ppm, фотореспирация снижалась на 50%, а ее ограничение означает, что растение может использовать больше своей энергии на построение тканей. Однако у этих растений в условиях возросшей концентрации СО 2 повышенный фотосинтез наблюдается в начальной стадии экспериментов, но после временной активации наступает его торможение. Транспортная система растения полигенна, зависит от многих факторов (энергетических, гормональных и др.) и не может быстро перестроиться. Поэтому при длительном воздействии на растение СО 2 в условиях повышенной концентрации фотосинтез снижается из-за избыточного накопления крахмала в хлоропластах .

Но тем не менее в практике доказано значительное увеличение роста и накопления биомассы у растений, выращенных при повышенной концентрации диоксида углерода, хотя со временем интенсивность фотосинтеза падает, приближаясь к тому, что наблюдается у растений, живущих в атмосфере с нормальным газовым составом. Это несоответствие находит объяснение в регуляторном действии углекислого газа на ростовую функцию растения. Длительное выдерживание растения при высокой концентрации СО 2 сопровождается увеличением площади листьев, стимуляцией роста побегов второго порядка, относительным возрастанием доли корней и запасающих органов в растении, усилением клубнеобразования. Ростовая функция усиливается за счет формирования нового фотосинтетического аппарата. Это свидетельствует о “двойной” роли СО 2 как субстрата в процессе фотосинтеза и как регулятора ростовых процессов. При повышении уровня углекислого газа в атмосфере устанавливается новое стационарное состояние системы, соответствующее новому уровню углекислоты, что и приводит к росту урожая преимущественно за счет увеличения объема всей фотосинтетической системы и в меньшей степени за счет интенсивности фотосинтеза на единицу площади листа.

Известным приемом повышения интенсивности и продуктивности фотосинтеза служит увеличение концентрации углекислоты в теплицах. Этот метод позволяет повысить прирост биомассы. Однако изменение концентрации СО 2 влияет на состав конечных продуктов фотосинтеза: было обнаружено, что при высоких концентрациях 14 СО 2 14 С включался преимущественно в сахара, а при низкой - в аминокислоты (серин, глицин и др.).

Поскольку атмосферный углекислый газ частично поглощают осадки и поверхностные пресные воды, в почвенном растворе повышается содержание СО 2 и как следствие этого происходит подкисление среды. В опытах, проведенных в нашей лаборатории, была предпринята попытка исследовать особенности воздействия растворенного в воде СО 2 на накопление биомассы растениями. Проростки пшеницы выращивались на стандартных водных питательных средах, в которых в качестве дополнительных источников углерода, помимо атмосферного, служили растворенный молекулярный СО 2 и бикарбонат-ион в различных концентрациях. Это достигалось варьированием времени насыщения водного раствора газообразным углекислым газом. Оказалось, что первоначальное повышение концентрации СО 2 в питательной среде приводит к стимулированию наземной и корневой массы растений пшеницы. Однако при 2-3-кратном превышении над нормальным содержания растворенного углекислого газа наблюдалось торможение роста корней растений с изменением их морфологии. Возможно, при значительном подкислении среды происходит уменьшение ассимиляции других питательных веществ (азота, фосфора, калия, магния, кальция). Таким образом, опосредованное воздействие повышенной концентрации СО 2 должно приниматься во внимание при оценке их влияния на рост растений.

Приведенные в приложении к петиции данные об интенсификации роста растений различных видов и возраста оставляют без ответа вопрос об условиях обеспеченности объектов изучения биогенными элементами. Следует подчеркнуть, что изменение концентрации СО 2 должно быть строго сбалансировано с потреблением азота, фосфора, других питательных веществ, света, воды в продукционном процессе без нарушения экологического равновесия. Так, усиленный рост растений при высоких концентрациях СО 2 наблюдался в среде, богатой питательными веществами. Например, на заболоченных землях в эстуарии Чесапикского залива (юго-запад США), где произрастают в основном С 3 -растения, увеличение СО 2 в воздухе до 700 ppm приводило к интенсификации роста растений и увеличению плотности их произрастания. Анализ более 700 агрономических работ показал, что при больших концентрациях СО 2 в среде, урожай зерновых в среднем был больше на 34% (там, где в почву вносилось достаточное количество удобрений и воды - ресурсов, имеющихся в изобилии только в развитых странах). Чтобы поднять продуктивность сельскохозяйственных культур в условиях роста углекислоты в воздухе, очевидно понадобится не только значительное количество удобрений, но и средств защиты растений (гербициды, инсектициды, фунгициды и т.д.), а также обширные ирригационные работы. Резонно опасаться, что стоимость этих мероприятий и последствия для окружающей среды окажутся слишком существенными и несоразмерными.

Исследования выявили также роль конкуренции в экосистемах, которая приводит к снижению стимулирующего эффекта высоких концентраций СО 2 . Действительно, саженцы деревьев одного вида в умеренном климате (Новая Англия, США) и тропиках росли лучше при высокой концентрации атмосферного СО 2 , однако при совместном выращивании саженцев разных видов продуктивность таких сообществ при тех же условиях не повышалась. Вероятно, конкуренция за питательные вещества сдерживает реакцию растений на повышение углекислого газа.

Высокое содержание СО 2 в воздухе может быть неблагоприятным для так называемых С 4 -растений, первые продукты фотосинтеза которых - соединения из четырех атомов углерода: яблочная и аспарагиновая кислоты, оксалоацетат. К этому классу относятся многие травы сухих, жарких тропических и субтропических областей, сельскохозяйственные культуры - кукуруза, сорго, сахарный тростник и др. У С 4 -растений имеется добавочный механизм карбоксилирования - своеобразный насос, концентрирующий СО 2 вблизи активного центра фермента, позволяющий этим растениям хорошо расти при обычных концентрациях диоксида углерода. У С 4 -растений в обычных условиях энергозатраты на фотореспирацию значительно ниже и эффективность фотосинтеза поэтому выше, чем у С 3 -растений. Примерно то же происходит и при фотосинтезе, характерном для типичных суккулентов. Его называют САМ-фотосинтезом (Crassulacean Acid Metabolism). САМ-растения подобно С 4 -растениям используют и С 3 , и С 4 -пути фотосинтеза, но отличаются от С 4 -растений тем, что для них характерно разделение этих путей только во времени, но не в пространстве, как у С 4 -растений.

Таким образом, с увеличением концентрации углекислоты С 3 -растения оказываются в более выгодном положении, чем С 4 - и САМ-растения, а это в свою очередь может иметь весьма серьезные последствия. Многие С 4 -растения станут редкими, или им грозит вымирание. В агроэкосистемах при выращивании С 4 -растений, например кукурузы или сахарного тростника, повышенная концентрация СО 2 может привести к падению их продуктивности, преимущество же получат сорняки, которые представлены в основном С 3 -растениями. В результате возможно значительное снижение урожая.

В случае потепления усиленный рост растений, при котором поглощается атмосферный диоксид углерода, не может компенсировать ускоренного разложения органических веществ. Это особенно важно, так как именно в высокоширотных местообитаниях, таких как тундра, ожидается наибольший рост температуры. В зоне вечной мерзлоты при таянии льда все больше торфа будет подвергаться воздействию микроорганизмов, разлагающих органическое вещество . Этот процесс в свою очередь приведет к большему выделению СО 2 и СН 4 в атмосферу. По оценкам, при росте летней температуры в тундре на 4°С в атмосферу дополнительно выделится до 50% углерода из торфа, несмотря на более интенсивный рост растений. В этом поясе сама притундровая растительность - важный климатообразующий фактор, поэтому при потеплении будет иметь серьезные последствия сдвиг границы леса на север. Изменится структура кормовой базы: на смену лишайникам и мхам, тяготеющим к низким температурам, придет кустарниковая растительность, непригодная для оленей. Кроме того, увеличение высоты снежного покрова неблагоприятным образом скажется на выживаемости появляющегося в это время молодняка.

Конкурентное взаимовлияние растений при ограниченных запасах питательных веществ будет сказываться не только на природных экосистемах, но и на экосистемах, создаваемых человеком. Поэтому сомнителен тезис, что будущее повышение уровня СО 2 в атмосфере приведет к более богатым урожаям и, как следствие этого, - к увеличению продуктивности животных.

Изучение адаптивной стратегии и реакции растений на колебания основных факторов, влияющих на изменение климата и характеристики окружающей среды, позволило уточнить некоторые прогнозы. Еще в 1987 г. был подготовлен сценарий агроклиматических последствий современных изменений климата и роста СО 2 в атмосфере Земли для Северной Америки . Согласно проведенным оценкам, при увеличении концентрации СО 2 до 400 ppm и росте средней глобальной температуры у земной поверхности на 0.5°С урожайность пшеницы в этих условиях увеличится на 7-10%. Но рост температур воздуха в северных широтах особенно проявится в зимнее время и вызовет чрезвычайно неблагоприятные частые зимние оттепели, которые могут привести к ослаблению морозостойкости озимых культур, вымерзанию посевов и повреждению их ледяной коркой. Прогнозируемое увеличение теплого периода вызовет необходимость селекции новых сортов с более продолжительным вегетационным периодом.

Что касается прогнозов урожайности основных сельскохозяйственных культур для России, то происходящий рост средних приземных температур воздуха и рост СО 2 в атмосфере, казалось бы, должны иметь положительный эффект. Воздействие только роста углекислого газа в атмосфере может обеспечить рост продуктивности ведущих сельскохозяйственных культур - С 3 -растений (хлебных злаков, картофеля, свеклы и др.) - в среднем на 20-30% , тогда как для С 4 -растений (кукурузы, проса, сорго, амаранта) этот рост незначителен . Однако потепление, очевидно, повлечет за собой снижение уровня атмосферного увлажнения примерно на 10%, что осложнит земледелие особенно в южной части Европейской территории, в Поволжье, в степных районах Западной и Восточной Сибири. Здесь можно ожидать не только снижения сбора продукции с единицы площади, но и развития эрозионных процессов (особенно ветровых), ухудшения качества почв, в том числе потери ими гумуса, засоления, опустынивания значительных территорий. Было установлено, что насыщение приземного слоя атмосферы толщиной до 1 м избытком СО 2 может откликнуться “эффектом пустыни”. Этот слой поглощает восходящие тепловые потоки, поэтому в результате его обогащения диоксидом углерода (в 1.5 раза в сравнении с нынешней нормой) локальная температура воздуха непосредственно у земной поверхности станет на несколько градусов выше средней температуры. Интенсивность испарения влаги из почвы увеличится, что приведет к ее иссушению . Из-за этого в целом по стране может снизиться производство зерна, кормов, сахарной свеклы, картофеля, семян подсолнечника, овощей и т.д. В результате изменятся пропорции между размещением населения и производством основных видов сельскохозяйственной продукции.

Наземные экосистемы, таким образом, весьма чувствительны к увеличению СО 2 в атмосфере, причем, поглощая избыточный углерод в процессе фотосинтеза, в свою очередь способствуют и росту атмосферного углекислого газа. Не менее важную роль в формировании уровня СО 2 в атмосфере играют процессы почвенного дыхания. Известно, что современное потепление климата вызывает усиленное выделение неорганического углерода из почв (особенно в северных широтах). Модельные расчеты , проведенные с целью оценки отклика наземных экосистем на глобальные изменения климата и уровня СО 2 в атмосфере, показали, что в случае только роста СО 2 (без климатических изменений) стимуляция фотосинтеза уменьшается при высоких значениях СО 2 , но выделение углерода из почв растет по мере его аккумуляции в растительности и почвах. Если содержание СО 2 в атмосфере стабилизируется, чистая продукция экосистем (результирующий поток углерода между биотой и атмосферой) быстро падает до нуля, так как фотосинтез компенсируется дыханием растений и почв. Ответом наземных экосистем на климатические изменения без воздействия роста СО 2 , согласно этим расчетам, может стать уменьшение глобального потока углерода из атмосферы в биоту из-за усиления дыхания почв в северных экосистемах и уменьшения чистой первичной продукции в тропиках в результате падения влагосодержания почв. Этот результат подтверждается оценками, согласно которым воздействие потепления на дыхание почв превалирует над воздействием его на рост растений и уменьшает почвенный запас углерода. Совместное воздействие глобального потепления и роста СО 2 в атмосфере может увеличить глобальную чистую продукцию экосистем и сток углерода в биоту, однако значительное возрастание почвенного дыхания может компенсировать этот сток в зимний и весенний периоды. Немаловажно, что эти прогнозы реакции наземных экосистем существенно зависят от видового состава растительных сообществ, обеспеченности питательными веществами, возраста древесных пород и значительно варьируют в пределах климатических зон.

* * * Данные, представленные в приложении к петиции, имели целью, как указывалось, предотвратить принятие документа, выработанного на международной встрече в Киото 1997 г. и открытого для подписания с марта 1998 г. по март 1999 г. Как показали итоги встречи в Буэнос-Айресе (ноябрь 1998г.), вероятность подписания этого документа рядом индустриально развитых государств, и в первую очередь США, практически отсутствует. В связи с этим возникает необходимость усовершенствования стратегии в решении проблемы глобальных изменений климата.

Вице-директор Института наблюдений за миром (The World Watch Institute) К.Флавин считает необходимым элементом дальнейшего движения - создание инициативной группы. В нее войдут страны (в частности, Европы и Латинской Америки), подписавшие протокол в Киото, крупнейшие города, “конструктивно мыслящие корпорации и фирмы” (“Бритиш Петролиум”, “Энрон Корпорейшен”, “Роял Дойч Шелл” и др.), активно поддерживающие ограничение эмиссии парниковых газов и включившиеся в процесс ограничения их выбросов на основе торговли эмиссиями.

По нашему мнению, важным вкладом в решение этой проблемы могло бы стать внедрение энергосберегающих технологий и использование возобновляемых источников энергии.

Литература

1 Robinson A.B., Baliunas S.L., Soon W., Robinson Z.W. Enviromental Effects of Increased Atmospheric Carbon Dioxide. Петиция вместе с обзором рассылалась в научно-исследовательские институты и отдельным ученым с просьбой подписать ее и в дальнейшем распространять среди коллег. Экземпляр петиции и обзора на русском и английском языке имеется в редакции “Природы”.

2 Подробнее см.: Сидоренков Н.С. Межгодовые колебания в системе атмосфера-океан-Земля //Природа. 1998. №7. С.26-34.

3 Клименко В.В., Клименко А.В., Снытин С.Ю., Федоров М.В. // Теплоэнергетика. 1994. №1. С.5-11.

4 Corti S., Molteni F., Palmer T.N. // Nature. 1999. V.398. №6730. P.799-802.

5 Tett S.F.B., Stott P.S., Allen M.R., Ingram W.J., Mitchell J.F.B. // Nature. 1999. V.399. №6736. P.569-572.

16 Мокроносов А.Т. Фотосинтез и изменение содержания СО 2 в атмосфере // Природа. 1994. №7. С.25-27.

17 Скурлатов Ю.И. и др. Введение в экологическую химию. М., 1994. С.38.

18 Романенко Г.А., Комов Н.В., Тютюнников А.И. Изменение климата и возможные последствия этого процесса в сельском хозяйстве // Земельные ресурсы России, эффективность их использования. М., 1995. С.87-94.

19 Mingkui C., Woodward F. I. // Nature. 1998. V.393. №6682. P.249-252.



Похожие статьи